IMSS Symposium 2011 December 6-7, 2011 Epochal Tsukuba

Science Cases of Energy Recovery Linac

Shin-ichi Adachi Photon Factory, KEK

Outline

- Fundamental features of ERL
- Science cases
- Grand challenges
- Summary

from fundamental features to the grand challenges

Spatial features of 3GeV ERL

(natural emittance, electron beam size, and divergence)

Sources	Natural emittance (nmrad)	σ _x μm	σ _y μm	σ _x , μrad	σ _y , μrad
ERL (3GeV)	0.017	7.1 Di	7.1 iffraction lii	2.3 nit @ ~7ke '	2.3
SPring-8 (8GeV)	3.4	298	6.1	12	1.1
Photon Factory (2.5GeV)	36	600	12	88	29
				High E Institu	inergy Accelerator Research Organizatio te of Materials Structure Science (IM

Temporal features of 3GeV ERL

(rep rate, photons, and duration)

Source	Rep rate	Photons/pulse	Photons/sec	Pulse duration
ERL	1.3GHz	10 ³ -10 ⁶ high rep 1	10 ¹² -10 ¹⁵	100fs-1ps t ructive
SASE-XFEL	60-120Hz	~10 ¹² / rep rate, sing	~10 ¹⁴ gle-shot, high	10-100fs peak power
Storage ring	1MHz-500MHz	10 ⁶ -10 ⁹	10 ¹² -10 ¹⁵	~100ps
				High Energy Accelerator Research Organization (KE Institute of Materials Structure Science (IMSS)

ERL Science Cases

Coherent X-ray imaging in 3D

Nano-science How does ReRAM work?

<u>Courtesy of Prof. Hiroshi Kumigashira (KEK PF)</u> (ERL Conceptual Design Report)

Short pulse	Spatial coherence	Nanobeam
Femtosecond pulse High rep rate	Diffraction limit Non-destructive	High brilliance Nano-focusing

X-ray photon correlation spectroscopy hierarchal structures in space and time (e.g. rubber)

Ultrafast dynamics in photosynthesis

Short pulse

Femtosecond pulse

• High rep rate

Spatial coherence

- Diffraction limit
 - Non-destructive

Nanobeam

- High brilliance
- Nano-focusing

World energy consumption by fuel type in 2010

Energy consumption and supply on the earth

- Incoming solar energy: 5.5x10²⁴ (J/year)
- Global energy consumption: 3x10²⁰ (J/year)
 -0.005% (~1 hour) of incoming solar energy
- Global production of photosynthesis: 3x
 10²¹ (J/year)

-0.05% (~10 hours) of incoming solar energy

EARTH'S ENERGY BUDGET

Investigating the Climate System, NASA, June 2003 http://www.nasa.gov/pdf/62319main_ICS_Energy.pdf

Key players Solar Cell and Photocatalyst

- Converts light energy to electricity
- Large-scale battery is needed for storage
- Quantum efficiency : ~20%

- Converts light energy to chemical energy
- Stored as hydrogen or hydrocarbons
- Quantum efficiency: ~5%

Toward developing highly efficient dye-sensitized solar cell

Ultrafast dynamics of the dye molecule is the key process.

Toward better dye-sensitized solar cell Ultrafast dynamics of metal complexes revealed by

time-resolved X-ray spectroscopy

Lin X. Chen.^{1*} Wighard J. H. Jäger,¹ Guy Jennings,² David J. Gosztola,¹ Anneli Munkholm,¹† Jan P. Hessler¹

Toward artificial photosynthesis Ultrafast dynamics of photocatalyst

Maeda, K. and Domen K. (2010) J. Phys. Chem. Lett. 1, 2655.

High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science (IMSS) Photon Factory

Toward artificial photosynthesis Hydrogen generation from water by photocatalyst (Ga_{1-x}Zn_x)(N_{1-x}O_x)

Maeda K. et al. (2006) Nature **440**, 295

Courtesy of Prof. Kazunari Domen (The Univ. of Tokyo)

Summary ERL Science

from fundamental features to the grand challenges

Ultrafast science	Coherent imaging, Hierarchal structure of non-periodic systems		Nano-science	
Short	High rep	Spatial coherence	High	Nano-
pulse	rate		brilliance	focusing

Summary #2

(by Chi-Chang Kao @ XDL2011, Cornell, June 2011)

- In order to realize future light source,
 - Identify problems that can capture the imagination of many
 - Organize the community to develop the scientific case, the necessary tools
 - Work with accelerator community to support the R&D effort

Thank you!