Dimensionally controlled metal-insulator transition in LaNiO₃ ultrathin films

Enju Sakai^{1,2}, Masatomo Tamamitsu¹, Kohei Yoshimatsu¹, Hiroshi Kumigashira^{1,3,*}, and Masaharu Oshima^{1,2,4}

¹Department of Applied Chemistry, The Univ. of Tokyo, Tokyo 113-8656, Japan ²JST-CREST, Japan Science and Technology Agency, Tokyo 113-8656, Japan ³JST-PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan ⁴SRRO, The Univ. of Tokyo, Tokyo 113-8656, Japan

Since the possibility of orbital ordering and high- T_C superconductivity in two-dimensionally confined LaNiO₃ (LNO) layers is suggested by a theoretical study [1], LNO thin films and superlattices become a subject of great interest. However, recent experimental studies have revealed that both LNO films and superlattices exhibit thickness-driven metal-insulator transition (MIT) at a critical layer thickness of 3-4 ML [2,3].

In order to investigate how the electronic structure changes as a function of layer thickness, we have performed *in situ* photoemission spectroscopy (PES) on ultrathin LNO films grown on LAO substrates.

Figure 1 shows the obtained PES spectra. With decreasing film thickness below 10 ML, the intensity at the Fermi level (E_F) gradually decreases, leading to the pseudogap formation at E_F . The pseudogap eventually evolves into an energy gap at E_F below 2 ML, indicating the occurrence of the thickness-driven MIT at a critical layer thickness of 2–3 ML. These spectral changes are in good agreement with the prediction from layer cluster dynamical mean field theory calculation [4], strongly suggesting that the thickness-driven MIT is caused by narrowing of the bandwidth due to the dimensional crossover from 3D to 2D [5]. [References]

[1] J. Chaloupka, and G. Khaliullin Phys. Rev. Lett.
100, 016404 (2008). [2] J. Son *et al.*, App. Phys.
Lett. 96, 062114 (2010) [3] R. Scherwitzl, *et al.*,
Phys. Rev. Lett. 106, 246403 (2011). [4] J. Liu *et al.*,
Phys. Rev. B 83, 161102 (2011). [5] K. Yoshimatsu, *et al.*, Phys. Rev. Lett. 104, 147601 (2010).

*Present address : KEK-PF

Fig.1 : PES spectra of LaNiO₃ thin films