Resonant soft X-ray scattering and spectroscopic study of Co^{3+} intermediate-spin state in RT ferromagnet $\text{Sr}_3\text{YCo}_4\text{O}_{10.5}$

J. Okamoto¹, H. Nakao¹, W. Kobayashi², S. Ishiwata³, D. J. Huang⁴, I. Terasaki⁵, and Y. Murakami¹ KEK-PF/CMRC¹, Univ. of Tsukuba², Univ. of Tokyo³, NSRRC Taiwan⁴, Nagoya Univ.⁵

Sr₃YCo₄O_{10.5} (SYCO) shows the highest ferromagnetic transition temperature of $T_C \sim 370$ K in Co perovskite[1]. Since Co ion is trivalent and crystal structure transition appears at T_C , it is expected that some structure ordering and Co³⁺ spin state degrees of freedom, such as high-spin(HS), intermediate-spin(IS), and low-spin(LS) states, may contribute to the RT ferromagnetism. Co *K*-edge resonant X-ray scattering revealed that x^2-z^2/y^2-z^2 type e_g orbital ordering occur in *ab* plane below T_C . This means that Co³⁺ ion takes IS state[2]. Direct information of the Co *3d* and ligand O *2p* electronic structures on Co³⁺ IS state and e_g orbital ordering is required to clarify how the e_g orbital ordering and Co³⁺ IS state affect on the RT ferromagnetism.

We have measured Co $L_{2,3}$ and O K edge XAS to study the Co³⁺ spin state. By comparing Co $L_{2,3}$ edge XAS of SYCO with LaCoO₃ in Fig.1 (a), SYCO spectrum shows different L_3 shoulder and L_2 peak characters from those of Co³⁺ LS state. Thus SYCO is deduced to take Co³⁺ HS/IS states. We have also measured Co $L_{2,3}$ and O K edge resonant soft X-ray scattering (RSXS) of orderings which relate with eg orbital and spin state orderings. Figure 1 (b) show Co $L_{2,3}$ edge RSXS energy scans of (2 0 0) under σ and π polarizations. There are many different characters but especially at 777 eV, where difference of spin state appears in XAS, appearance and disappearance of a sharp peak is observed. In the presentation we will show results of spectral analyses of XAS and RSXS energy scans for further discussion.

Fig. 1: (a) Co $L_{2,3}$ -edge XAS spectra of SYCO and LaCoO₃, and (b) RSXS energy scans of $q = (2 \ 0 \ 0)$ under σ and π polarizations.

[1] W. Kobayashi et al., Phys. Rev. B 72, 104408 (2005).

[2] H. Nakao et al., J. Phys. Soc. Jpn. 80, 023711 (2011).