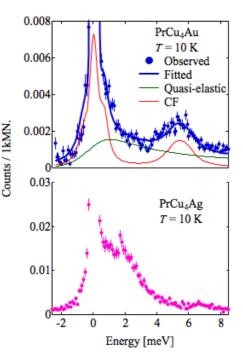
Neutron scattering study on magnetic properties of $PrCu_4T$ (T = Au and Ag)

H. KOBAYASHI, K. SAITO, K. TOMIYASU, K. IWASA S. ZHANG¹, Y. ISIKAWA¹, J.-M. MIGNOT², A. GILLET²

Department of Physics, Tohoku University, Sendai 980-8578, Japan

¹Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan ²Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif sur Yvette, France

Pr-based compounds have been studied for various electron properties arising from $4f^2$ electron configuration hybridizing strongly with conduction electron as in PrFe₄P₁₂[1]. PrCu₄*T* (*T* = Au and Ag) crystallizing into a MgCu₄Sn-type crystal structure are considered as examples of such correlated electron systems. PrCu₄Ag and PrCu₄Au undergo antiferromagnetic transitions below $T_N = 2.4$ K and 2.5 K, respectively. Their crystal-field-splitting (CF) ground states are magnetic triplet Γ_5 , investigated by the magnetization[2,3]. Specific heat measurements show that PrCu₄Au has the large electronic specific heat coefficient $\gamma = 0.77$ J / mol K. This fact indicates that PrCu₄Au is a heavy fermion system[2]. On the other hand, it is thought that *C/T* of PrCu₄Ag has a small value at the zero-temperature limit[3].


To understand these properties of the localized electron exhibiting magnetic ordering and of the itinerant electron deduced from the specific heat, we performed neutron diffraction and inelastic neutron scattering (INS) measurements. A figure shows the INS spectra of $PrCu_4T$. The spectrum of

PrCu₄Au is composed of a broad quasi-elastic response (a green line) and sharp peaks (a red line) due to the CF excitation. All $4f^2$ levels exist within 11 meV, so various degrees of freedom affect the properties in low temperature. The spectrum of PrCu₄Ag may also be reproduced with large contribution of the quasi-elastic scattering, superimposed with the three peaks in the lower energy region. The former contribution is considered to indicate strong hybridization for Pr f^2 electron state, in contrast to the smaller C/T value PrCu₄Ag than PrCu₄Au. We will report these INS spectra and the magnetic structures, for elucidating the electronic states of PrCu₄T.

[1] H. Sugawara et al.: Phys. Rev. B 66 (2002) 134411.

[2] S. Zhang et al.: J. Phys.: Condens. Matter 21 (2009) 205601.

[3] S. Zhang et al.: J. Phys. Soc. Jpn. 79 (2010) 114707.

