Detection of Orbital Wave in YVO_3

<u>D. Kawana</u>, Y. Murakami, T. Yokoo¹, S. Itoh¹, A.T. Savich², G.E. Granroth²,
K. Ikeuchi³, H. Nakao, K. Iwasa⁴, R. Fukuta⁵, S. Miyasaka⁵, S. Ishihara⁴ and
Y. Tokura^{6,7,8}
CMRC/IMSS/KEK, ¹KENS/IMSS/KEK, ²NSSD/ORNL, USA, ³CROSS, ⁴Tohoku U.,
⁵Osaka U., ⁶CERG & CMRG/RIKEN, ⁷Tokyo U., ⁸ERATO/JST

We focus on an orbital excitation in YVO₃, which shows the complex magnetic and orbital orderings in the low temperatures [1]. In the phase where the *G*-type orbital order accompanied with the *C*-type spin order (*G*-OO/*C*-SO) appears, the existence of the large orbital-fluctuation is suggested [2]. Additionally, a large dispersive orbital-wave along the *c*-axis, due to the strong one-dimensional spin-orbital correlation, is calculated [3]. In consideration of the neutron scattering cross-section obtained from the correlation function for the orbital angular moment, we have attempted to detect the orbital excitation using the fine-resolution chopper spectrometer SEQUOIA at SNS, ORNL.

Figure shows a contour map of $S(Q, \omega)$ for YVO₃ at T=88 K (G-OO/C-SO phase). A clear dispersion observed up to 35 meV disappears in the paramagnetic phase. This energy range is higher than that reported previously [3]. On the other hand, weak excitations are observed in the range of 40-70 meV. In this poster, we discuss whether these are originated from orbital excitation or not.

References

- [1] S. Miyasaka et al., Phys. Rev. B **73**, 224436 (2006).
- [2] C. Ulrich et al., Phys. Rev. Lett. **91**, 257202 (2003).
- [3] S. Ishihara, Phys. Rev. B **69**, 075118 (2004).