Magnetic excitations in metallic antiferromagnet (Mn,Fe)3Si

H. Hiraka
Institute for Materials Research, Tohoku University, Japan

Heusler-type intermetallic compound $\mathrm{Mn}_{3} \mathrm{Si}$ is an antiferromagnetic metal with $T_{\mathrm{N}}=$ 21 K , and it has two types of Mn moments: $m_{\mathrm{I}} \sim 2 \mu_{\mathrm{B}}$ and $m_{\mathrm{II}} \sim 0.2 \mu_{\mathrm{B}}$. [1] Although the static susceptibility χ appears to show a Curie-Weiss-type thermal evolution, its Weiss temperature extrapolated from the raw data reaches $\Theta_{p} \sim-650 \mathrm{~K}$, associated with an effective Bohr magneton of $\mu_{\text {eff }} \sim 2 \mu_{\mathrm{B}} / \mathrm{Mn}$ (average). Therefore, a quite large magneticenergy scale than $\sim k_{\mathrm{B}} T_{\mathrm{N}}$ is inferred in $\mathrm{Mn}_{3} \mathrm{Si}$, judging from the ratio of $\left|\Theta_{p}\right| / T_{\mathrm{N}} \sim 30$. Indeed, there is little change in susceptibility, specific heat, and resistivity under strong magnetic fields of $12 \mathrm{~T}\left(m_{\mathrm{I}} H \sim k_{\mathrm{B}} T_{\mathrm{N}}\right)$. [2] Also, paramagnetic scattering persists even at $200 \mathrm{~K}\left(\sim 10 T_{\mathrm{N}}\right)$, [3] and magnetic excitations emerging at around the antiferromagnetic Bragg point extend with a steep slope at least up to $\sim 15 \mathrm{meV}\left(\sim 7 k_{\mathrm{B}} T_{\mathrm{N}}\right)$. [4]

Recently, we measured inelastic neutron spectra of $\mathrm{Mn}_{2.8} \mathrm{Fe}_{0.2} \mathrm{Si}\left(T_{\mathrm{N}}=23 \mathrm{~K}\right)$ on a modern time-of-flight chopper-spectrometer at the high-flux neutron source SNS, Oak Ridge, U.S.A. In this sample, the Weiss temperature decreases to $\Theta_{p} \sim-400 \mathrm{~K}$ by Fe doping, but it is still much larger in magnitude than T_{N}. As a result, the steep magnetic dispersion is found to extend up to $\sim 30 \mathrm{meV}$. Besides, beyond our expectation, the magnetic symmetry in \mathbf{Q} space substantially changes at further high energies. Hence, the magnetic energy scale of $\mathrm{Mn}_{3-x} \mathrm{Fe}_{x} \mathrm{Si}$ is no longer small.

A possible scenario for the suppression of T_{N} is due to magnetic frustration in metals. At present, however, we do not know whether it is correct or not. Rather, we are interested in the similarity with antiferromagnetic metal of $\alpha-\mathrm{Mn}$ with respect to the temperature dependence of susceptibility and resistivity. [5] In the presentation, we will show the newly found magnetic excitations in detail and discuss what the Weiss temperature means in itinerant-electron systems.

References

[1] S. Tomiyoshi et al., J. Phys. Soc. Jpn. 39, 295 (1975).
[2] C. Pfleiderer et al., Phys. Rev. B 65, 172404 (2002).
[3] Y. Yamaguchi et al., Physica B 213\&214, 363 (1995).
[4] S. Tomiyoshi et al., Phys. Rev. B 36, 2181 (1987).
[5] H. Sato and A. Arrott, J. Phys. Soc. Jpn. 17 Suppl. B-I, 147 (1962).

