Impurity doping effects on orbital order in MnV2O4

K. Hemmi¹, R. Fukuta¹, S. Miyasaka¹, S. Tajima¹, A. Nakao², H. Nakao², R. Kumai², Y. Murakami² ¹Department of Physics, Osaka University, Osaka 560-0043, Japan ²KEK PF/CMRC, Tsukuba 305-0801, Japan

Spinel-type vanadium oxides AV_2O_4 are ideal materials to investigate spin, orbital and charge ordering in a geometrically-frustrated system because the V^{3+} ($3d^2$) ions have orbital degrees of freedom of t_{2g} electrons. We investigated impurity doping effects of Cr^{3+} ($3d^3$) and $Mo^{3+}(4d^3)$, which have no orbital degrees of freedom, for the V^{3+} site of MnV_2O_4 . We found the suppression of the orbital ordering and the difference of electronic structures depends on impurities.

 $Mn(V_{1-x}M_x)_2O_4$ (*M*=Cr, Mo) single crystals were grown by floating-zone method. Magnetization measurements were carried out with a SQUID magnetometer. The powder X-ray diffraction experiment was carried out at BL-8A of the Photon Factory, KEK. Resistivity was measured by a standard four-probe method. Optical reflectivity measurements were performed with FTIR spectrometer.

Fig. 1 shows the phase diagrams of $Mn(V_{1-x}M_x)_2O_4$ (*M*=Cr, Mo) determined by the magnetic susceptibility. In MnV₂O₄, there are the collinear ferromagnetic phase transition at T_N=59K and the orbital ordering transition accompanied by structural transition at T₀₀=54K. These are consistent with the previous reports [1, 2]. T₀₀ is suppressed with increasing impurities and disappears above *x*=0.12 and 0.08 in Cr-doped and Mo-doped samples, respectively. It was confirmed that the structural transition temperatures of the doped samples almost coincide with the T₀₀. In addition, we found that while Cr-doped samples remain Mott insulators, Mo-doped samples become metallic with increasing Mo content by resistivity and optical measurements.

These results indicate that electrons remain localized in the Cr-doped system, while they become itinerant in the Mo-doped one.

Fig. 1. Phase diagrams of

 $Mn(V_{1-x}M_x)_2O_4$ (M=Cr, Mo).

- [1] R. Plumier and M. Sougi, Solid State Commun. 64, 53 (1987).
- [2] S. Suzuki et al., Phys. Rev. Lett. 98, 127203 (2007).