Cation size variance effect on spin and orbital orders in RVO_3

R. Fukuta^A, N. Sasaki^A, K. Hemmi^A, S. Miyasaka^A, S. Tajima^A,

D. Kawana^B, K. Ikeuchi^B, Y. Yamasaki^B, A. Nakao^B, H. Nakao^B,

R. Kumai^B, Y. Murakami^B, and K. Iwasa^C

Dept. of Phys. Osaka Univ.^A, KEK-PF/CMRC^B, Dept. of Phys. Tohoku Univ.^C

Perovskite RVO_3 (R: rare earth ions or Y) has orbital degrees of freedom between d_{yz} and d_{zx} orbitals in V³⁺ ions, and shows G-type orbital order (G-type OO) accompanied with C-type spin order (C-type SO) and C-type OO with G-type SO. The transition temperatures of each spin and orbital orders show the systematic dependence on the R-site ionic radius [1]. On the other hand, spin and orbital orders in RVO_3 can be controlled by R-site cation size variance, expressed by $\langle r_i^2 \rangle - \langle r_i \rangle^2$ (r_i is the R-site ionic radius) [2].

We synthesized size variance introduced series of RVO_3 , where the average ionic radius of R-site was fixed. By measurements of the magnetization, synchrotron powder x-ray diffraction, resonant x-ray scattering, and neutron diffraction, we generated the global phase diagram of spin and orbital orders in RVO_3 . In the sample with any R-site ionic radius, the transition temperature of G-type OO and C-type SO are suppressed by increasing variance. On the other hand, the transition temperature of C-type OO/G-type SO (T_{SO2}) shows a different behaviour. In $Y_{1-x}(La_{0.195}Lu_{0.805})_xVO_3$ with the smaller R-site ionic radius, T_{SO2} is enhanced with increasing variance. In $Eu_{1-x}(La_{0.254}Y_{0.746})_xVO_3$ and $Sm_{1-x}(La_{0.322}Y_{0.678})_xVO_3$ with the middle R-site ionic radius, the pure material (x = 0)has no C-type OO/G-type SO. With increasing the size variance, the phase transition of C-type OO/G-type SO is emerged and the T_{SO2} is enhanced. In $Nd_{1-x}(La_{0.491}Y_{0.509})_xVO_3$ with the larger R-site ionic radius, however, the phase transition of C-type OO/G-type SO is not observed. These results indicate that the smaller R-site ionic radius and the larger R-site size variance stabilize the C-type OO/G-type SO state.

Figure 1: Spin and orbital phase diagram of the size variance introduced sample of (a) $Y_{1-x}(La_{0.195}Lu_{0.805})_xVO_3$, (b) $Eu_{1-x}(La_{0.254}Y_{0.746})_xVO_3$, and (c) $Sm_{1-x}(La_{0.322}Y_{0.678})_xVO_3$.

 Reference
 [1] S. Miyasaka et al., Phys. Rev. B, 68, 100406(R) (2003).

 [2] J. -Q. Yan et al., Phys. Rev. Lett, 99, 197201 (2007).