Origin of the ferromagnetic state in SrRuO₃

Je-Geun Park^{1,2,3}

¹ Department of Physics & Astronomy, Seoul National University, Seoul 151-742, Korea ² Center for Strongly Correlated Materials Research, Seoul National University, Seoul, 151-742, Korea

³ Center for Korean J-PARC Users, Seoul National University, Seoul 151-742, Korea

Ru oxides are well known to exhibit surprising physical properties due to nontrivial correlation effects as well as appreciable spin-orbit coupling. Especially, SrRuO₃ has drawn much attention for its unique ferromagnetic transition. First and foremost, SrRuO₃ is the only Ru ferromagnetic material with Tc=160 K and a sizable moment of $\mu_{ord} \sim 1 \mu_B$. Despite extensive studies spanning several decades, the origin of the ferromagnetic transition has still remained very much elusive.

In order to understand better the singular behavior of SrRuO₃, we have carried out extensive studies from bulk measurements to microscopic studies including neutron scattering. In particular, we used two state-of-art neutron instruments of its kind in order to probe much deeper into the structure and spin dynamics of SrRuO₃ than before. One is the high-resolution powder diffractometer (S-HRPD) built at J-PARC and the other is the time-of-flight Brillouin spectrometer (BRISP) at ILL. The extensive set of the data we have obtained shed new and important light on the origin of the puzzling ferromagnetic transition of SrRuO₃.