Microscopic characterization of the nano-domain ferromagnet FINEMET

A. Koda^{1, 2, 4}, K. Nishiyama^{1, 4}, M. Miyazaki^{1, 2}, M. Hiraishi^{1, 2}, K.M. Kojima^{1, 2, 4}, R. Kadono^{1, 2, 4}, K. Shimomura^{1, 4}, Y. Miyake^{1, 2, 4}, C. Ohmori^{3, 4}, M. Yoshii^{3, 4}, K. Hasegawa^{3, 4}, M. Nomura⁴, M. Yamamoto⁴, A. Schnase⁴, F. Tamura⁴

 ¹Muon Science Laboratory, Institute of Materials and Structural Science, High Energy Accelerator Research Organization (KEK), Tokai, Naka, Ibaraki 319-1106 Japan
²Graduate University for Advanced Studies (SOKENDAI), Oho, Tsukuba, Ibaraki 305-0801 Japan
³Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tokai, Naka, Ibaraki 319-1195 Japan
⁴J-PARC Center, Tokai, Naka, Ibaraki 319-1195 Japan

It is known that the coercivity H_c in conventional magnetic alloys having a grain size D greater than 1µm increases with decreasing the grain size. In contrast, however, when the grain size is reduced below 0.1 µm, H_c exhibits a drastic decreasing with decreasing D. Therefore, nano-grained magnetic materials have been attracting attentions concerning the utilization as electromagnetic devices. Such fine grained magnetic alloys are realized by deposition of nano-crystals in the amorphous state of Fe-Si-B alloys under a controlled heat treatment, which is known as so-called FINEMET developed by Hitachi Metal. It is important to date that, in J-PARC (Japan Proton Accelerator Research Complex), improving the magnetic response of the acceleration cavity against high radio frequency voltage is essential in order to attain high intense and short-bunched beam.

Muon is a useful tool to investigate magnetism from a microscopic viewpoint. Thus, we conducted μ SR experiment at high temperatures up to 850 K with simulating the heat treatment during the production process in order to provide *in situ* information of emerging nano-grained crystals.

In Fig. 1, μ SR time spectra at 850 K under zero and transverse fields are shown. As inferred from the difference of the observed asymmetry between zero and transverse fields, there exists non-magnetic portion in the measured sample. Besides, fast depolarization is seen at $t < 0.5 \,\mu$ s, suggesting the deposition of ferromagnetic grains. The obtained result clearly indicates the emergence of the ferromagnetic domain among the non-magnetic base material in FINEMET.

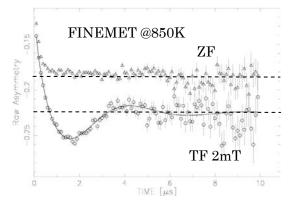


Fig.1: Time spectra of muon spin polarization in FINEMET at 850 K measured under zero and transverse magnetic fields.