Doping variation of oxygen hole symmetry in layered perovskite nickelates

M. Uchida¹, Y. Yamasaki², J. Okamoto², Y. Kaneko³, H. Nakao², Y. Murakami², and Y. Tokura^{1,3,4}

 ¹Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
²Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
³Multiferroics Project, ERATO, Japan Science and Technology Agency (JST), Tokyo 113-8656, Japan
⁴Cross-Correlated Materials Research Group (CMRG) and Correlated Electron Research Group (CERG), ASI, RIKEN, Wako 351-0198, Japan

High- $T_{\rm c}$ superconductivity appears close to the Mott transition induced by doping holes into antiferromagnetic parent insulators. Such filling-control insulator-metal transitions are widely observed for transition-metal oxides with strongly correlated electrons, yet the emergence of high-T_c superconductivity remains unique for the layered cuprates. Layered nickelate $R_{2-x}Sr_xNiO_4$ (R being rare earth element) with K₂NiF₄ type structure is a rare example of a two-dimensional antiferromagnetic insulator-metal transition system, providing а contrastive counterpart to superconducting $R_{2-x}Sr_xCuO_4$ with the same crystal structure. RSNO shows diagonal-stripe and checkerboard charge ordering at $x \sim 1/3$ and 1/2, respectively, and then undergoes an insulator-metal transition at $x \sim 1$.

We have succeeded in growing single crystals of Nd_{2-x}Sr_xNiO₄ up to the metallic region by using a high-pressure floating zone method and investigated the orbital characters of doped holes by systematically measuring polarization-dependent O *K*- and Ni *L*-edge absorption spectra. Figure shows the doping dependence of the O *K*-edge absorption spectra for E || *c*. Two peaks appear above *x*=0.6 and 1.0, respectively, suggesting that the checkerboard type charge ordering persists above *x*=1/2 with introducing the excess holes to $3z^2 r^2$ orbital states and that the insulator-metal transition occurs with its melting at *x*~1.

FIG. Doping variation of O *K*-edge absorption spectra for E $\parallel c$ in Nd_{2-x}Sr_xNiO₄.