Structure-related thermoelectric properties of SrNbO_{3.4}

M. Matsushita¹, W. Kobayashi^{2,3}, I. Terasaki⁴, A. Nakao⁵, H. Nakao⁵, and Y. Murakami⁵ ¹Waseda University, ²University of Tsukuba, ³JST PRESTO, ⁴Nagoya University, ⁵KEK PF/CMRC

Low-dimensional materials can be a good thermoelectrics owing to their reduced thermal conductivity by phonon scattering and the enhanced thermopower by steep change in density of states at the Fermi level. We have studied quasi-one -dimensional (Q1D) Hollandite Ba_{1.2}Rh₈O₁₆ and found large power factor of 30 μ W/cmK² at 75 K comparing with that seen in Na_xCoO_2 at 300 K [1].

SrNbO_{3.4} with Nb^{4.8+} (4d^{0.2}) is known to be a good Q1D conductor [2]. SrNbO_{3.4} (n=5) belongs to homologous series of Sr_nNb_nO_{3n+2}, and is derived fromthe three-dimensional network of SrNbO₃perovskite structure by separating the NbO₆octahedra parallel to the (110) planes andintroducing additional oxygen. (see theinset of Fig. 1) We have grown singlecrystals of SrNbO_{3.4} and investigatedstructure-related thermoelectric propertiesperforming synchrotron x-ray diffractionmeasurement.</sub>

As shown in Fig. 2(a), the resistivity is found to be 7, 110, and 840 m Ω cm for the *a*, *b*, and *c* axes, respectively showing the anisotropy of ~15 in the *ab* plane. The

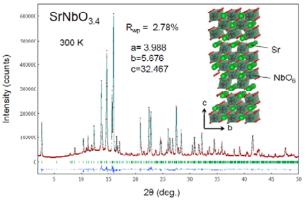


Fig. 1 X-ray powder diffraction pattern of $SrNbO_{3.4}$ at 300 K

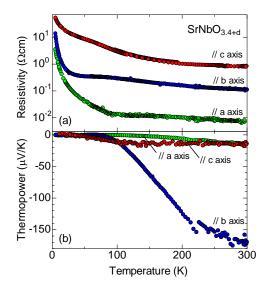
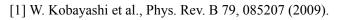



Fig. 2 (a) Resistivity and (b) thermopower of $SrNbO_{3,4}$

thermopower along *b* axis is -150 μ V/K, which is one order of magnitude larger than those of -15 and -25 μ V/K along *a* and *c* axes. In particular, the anisotropy in the thermopower appears at around 100 K, which relates to change of activation energy of the resistivity shown in Fig. 2(a). We will discuss a possible origin of the huge anisotropy in the thermopower showing the temperature dependence of lattice parameters and atom positions.

[2] C. A. Kuntscher et al., Phys. Rev. Lett. 89, 236403 (2002).