Soft x-ray angle-resolved photoemission study on SrRuO₃ thin films

K. Yoshimatsu¹, E. Sakai^{1,2}, H. Kimigashira^{1,3,4}, A. Fujimori⁵, and M. Oshima^{1,2,5}

¹Department of Applied Chemistry, The Univ. of Tokyo, Tokyo 113-8656, Japan

²CREST, Japan Science and Technology Agency, Tokyo 113-8656, Japan

³PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan

⁴SRRO, The Univ. of Tokyo, Tokyo 113-8656, Japan

⁵Department of Physics, The Univ. of Tokyo, Tokyo 113-8656, Japan

Perovskite-type ruthenate exhibits the unusual physical properties such as the superconductivity-metal-insulator transition in $Ca_{2-x}Sr_xRuO_4$ and the ferromagnetic-paramagnetic transition in $Ca_{1-x}Sr_xRuO_3$. In order to clarify the origin of these physical properties, it is essential to obtain the information on the band structures of these oxides, especially the Fermi surface (FS) topology. Angle-resolved photoemission spectroscopy (ARPES) is one of the best experimental ways to directly determine the band structures. However, there are few ARPES studies on $Ca_{1-x}Sr_xRuO_3$ owing to the absence of any cleavage surfaces, which is in sharp contrast to the intensive ARPES studies on layered $Ca_{2-x}Sr_xRuO_4$ having cleavable planes.

In this study, we have performed soft x-ray ARPES studies on SrRuO₃ (SRO) thin films grown onto Nb-doped SrTiO₃ substrates by laser molecular beam epitaxy. ARPES spectra were recorded at 20 K where SRO thin films are in the ferromagnetic phase. Figure 1 shows the FS of SRO thin films in the Γ XM plane determined by the present ARPES measurements. The observed FS's are in good agreement with the prediction

Figure 1: Fermi surface of $SrRuO_3$ thin film in the ΓXM plane.

from the band structure calculations [1]. As shown in Fig. 1, there are two FS sheets centered at the Γ and the M points in the Γ XM plane. In comparison to the band structure calculation, the FS sheets centered at the Γ point, which may be derived from two almost degenerated sheets, has electron-like character, while that centered at the M point has hole-like character.

[1] G. Santi et al., J. Phys. Condens. Matter 9, 9563 (1997).