Photodetachment of positronium negative ion

K. Michishio ${ }^{1}$, T. Tachibana ${ }^{1}$, H. Terabe ${ }^{1}$, K. Wada ${ }^{2}$, T. Hyodo ${ }^{2}$, T. Kuga ${ }^{3}$, A. Yagishita ${ }^{2}$, A. Igarashi ${ }^{4}$ and Y. Nagashima ${ }^{1}$
${ }^{1}$ Department Physics, Tokyo University of Science, Shinjuku, Tokyo, 162-8601, Japan
${ }^{2}$ Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
${ }^{3}$ Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, 153-8902, Japan
${ }^{4}$ Faculty of Engineering, Miyazaki University, Miyazaki, 889-2192, Japan

Photodetachment of the positronium negative ion (Ps^{-}) has been performed employing a linac based pulsed slow positron beam combined with the use of a high intensity pulsed Nd: YAG laser at the slow positron facility of KEK.

The low energy pulsed positron beam (12ns, 50 pps) was incident onto a Na coated tungsten target to form Ps^{-}[1]. The Ps^{-}was accelerated by the potential difference between the target and a grid which was mounted in front of the target. The blue-shifted γ-rays from two-photon self-annihilation of the Ps^{-}were detected by pure Ge detectors [2].

An intense fundamental laser light from Q-switched Nd:YAG laser ($400 \mathrm{~mJ} / \mathrm{pulse}$ at $1064 \mathrm{~nm}, 12 \mathrm{~ns}, 25 \mathrm{pps}$) synchronized to the Ps^{-}bunch was irradiated and attenuation of the Ps^{-} signal in the annihilation γ-rays energy spectrum has been observed as shown in figure1. This attenuation indicates that the o-Ps atoms which do not contribute to Ps^{-}signal were produced by the photodetachment of Ps^{-}. The success of the photodetachment will provide a potential source of the energy tunable Ps beam.

Figure1: Annihilation γ-rays energy spectrum with laser on and off.
[1] H. Terabe, K. Michishio, T. Tachibana and Y. Nagashima, J. Phys. Conf. Series in press.
[2] T. Tachibana, K. Michishio, H. Terabe, K. Wada, T. Hyodo, T. Kurahara, A. Yagishita, and Y. Nagashima, Nucl. Instr. and Meth. in Phys. Res. A 621, 670-672 (2010).

