Magnetism and lattice modulation of multiferroic RMn₂O₅ studied by synchrotron radiation x-ray

<u>Satoru Horio</u>^{1*}, Kenta Yamazaki¹, Jin Lin¹, Mamoru Fukunaga¹, Hiroyuki Kimura¹, Yukio Noda¹, Nobuyuki Abe¹, Taka-hisa Arima¹, Hironori Nakao² and Yusuke Wakabayashi³

¹ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

² Institute of Materials Structure Science, High Energy Accelerator Research

Science,1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

³ Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Magnetic and dielectric properties of RMn_2O_5 (*R*=rare earth, Bi) have been extensively studied, showing that there are a rich variety of magnetoelectric effects,

depending on the type of R^{3+} ion. Recently, we have paid attention to (Eu, Sm, Gd) Mn₂O₅ compounds of larger ionic radius group in rare earth family. Microscopic magnetic properties for (Eu, Sm, Gd) Mn₂O₅ have not been studied well so far, because neutron magnetic diffraction experiments for these compounds are almost impossible due to a large absorption of neutron by Eu, Sm, and Gd atoms. We measured superlattice reflections of (Eu, Sm)Mn₂O₅ with the lattice modulation vector $q_{\rm L}$ associated with the magnetic order $(q_L=2q_M)$ by using Synchrotron X-ray diffraction. About (Gd,Sm)Mn₂O₅, we measured magnetic order q_M of (Gd,Sm)Mn₂O₅ by using resonant magnetic X-ray diffraction. The experiments were performed at BL4C in Photon Factory of KEK. We also measured permittivity, electric polarization and magnetic susceptibility for (Eu, Sm, Gd) Mn₂O₅.

Figure 1 shows the permittivity curve of EuMn₂O₅,

Fig. 1: Temperature dependence of permittivity for $EuMn_2O_5$ on heating.

Fig. 2: Temperature dependence of lattice modulation wave vector q_z for EuMn₂O₅ on heating.

which has peaks around T = 40 K, 32 K and 20 K. Figure 2 shows the temperature dependence of the lattice modulation wave vector q_z in EuMn₂O₅ (q_x is not shown here). Below $T_N \sim 40$ K, lattice modulation characterized by the wave vector of $q_L = (q_x, 0, q_z)$ with $q_x = 0$ appears. At T = 32 K, q_z is locked at 2/3 value. On further cooling, both q_x and q_z becomes incommensurate. The results indicate that the magnetic phase transition and dielectric phase transition simultaneously occur.