Magnetic Excitation of Possible Spin-Peierls System TiOBr

T. Yokoo1,2, S. Itoh1,2 and J. Akimitsu3

1Institute of Materials Structure Science, KEK, Oho 1-1 Tsukuba, Ibaraki 305-0801
2Materials and Life Science Division, J-PARC Center, Shirakata 2-4, Tokai, Ibaraki 319-1195
3Department of Physics, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 252-5258

Newly proposed spin-Peierls system TiOX (X: Cl, Br) has been revealed showing exotic structural and magnetic properties such as a successive phase transition, one-dimensional (1D) nature associated with orbital ordering of Ti ions and super-lattice peak being related to the Peierls instability. It is pointed out that resulting only from an arrangement of Ti d_{xy} orbital, the formation of 1D spin chains and spin-Peierls transition will be realized. Recently, it has been demonstrated that TiOBr also exhibits two successive phase transitions similar to TiOCl at $T_{c1}=27$ K and $T_{c2}=47$ K.

Here we carried out inelastic neutron experiments in order to see the evidence of spin-Peierls transition. The inelastic spectrum with a large amount of poly crystalline sample of TiOBr shows the localized signal in the vicinity of the magnetic zone center. Observed spin gap like signal lies at energy of $\Delta \sim 10$ meV. The gap energy in TiOBr is expected much higher from measured thermodynamic properties and by analogy with TiOCl. Constant Q cuts of the observed $S(Q, E)$ map show some Q-dependent structure in its intensity indicating the signal is sample oriented. Powder averaged dynamical structure factor $S(Q, E)$ of 1D magnet can explain the Q dependence.