Resonant X-ray scattering of BaV₁₀O₁₅

Kou Takubo,¹ Tatsuya Kanzaki,¹ Tomomasa Kajita,¹ Hironori Nakao,² Yuichi Yamasaki,² Youichi Murakami,² and Takuro Katsufuj^{1,3,4}
¹Department of Physics, Waseda University, Tokyo 169-8555, Japan
²Condensed Matter Research Center and Photon Factory,
Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
³Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Tokyo 169-0051, Japan
⁴PRESTO, Japan Science and Technology Corporation, Saitama 332-0012, Japan

BaV₁₀O₁₅ contains modified V^{2.8+} (3 $d^{2.2}$) triangular lattices and shows a structural phase transition at $T_c = 123$ K [1]. Recently, T. Kajita *et al.* found that the trimerization of the V ions occurs below T_c by the powder-diffraction measurements, suggesting the orbital ordering of V t_{2g} states [2].

We investigated the orbital state in $BaV_{10}O_{15}$ using resonant x-ray scattering (RXS) techniques at the *K* absorption edge of V. The energy and azimuthal angel dependences of the resonant signal at the reflections of $Q=(0\ 1\ 0)$ and $(0\ 5\ 0)$ were studied. Figure 1 shows the results of the resonant x-ray scattering of $BaV_{10}O_{15}$. The observed azimuthal angle Ψ and Q dependences are consistent with the orbital ordering model with the V trimerizations.

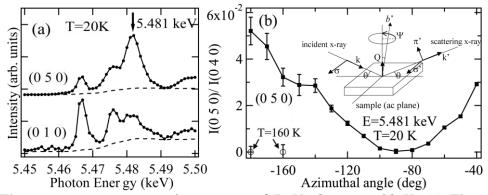


Fig.1 The resonant x-ray scattering spectra of $BaV_{10}O_{15}$ at T=20 K. (a) The energy spectra for the reciprocal position of (0 1 0) and (0 5 0). The arrow denotes the main-edge peak of the x-ray scattering. (b) Azimuthal angle dependences of the magnitude at the main-edge peak for Q=(0 5 0). The inset shows a schematic view of the experimental configuration and definition of the polarization directions.

[1] C. A. Bridges and J. E. Greedan, J. Solid State Chem. 177, 1098 (2004).

[2] T. Kajita et al., Phys. Rev. B 81, 060405(R) (2010).