Stepwise neutral-ionic phase transitions in a covalently-bonded donor/acceptor chain compound

Hajime Sagayama¹, Taka-hisa Arima¹, Natsuko Motokawa², Tamiko Chiyo², Miho Takemura², Hitoshi Miyasaka² and Masahiro Yamashita²

¹Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. ²Department of Chemistry, Graduate School of Science, Tohoku University.

Ru₂F₄Ph-DMDCNQI is the first example of a covalently-bonded donor (DMDCNQI) and acceptor (Ru₂F₄Ph) chain complex exhibiting neutral(N)-ionic(I) phase transitions. The $[-{Ru_2}-(DMDCNQI)-]$ chains run along the a axis and make π -stack arrangements along the b and c axes. N-I transitions successively occur at two critical temperatures T_1 ~270K and T_2 ~210K. From crystal structure analysis at the laboratory level, averages of the charge transfer degree, δ , in high-temperature phase (T> T_1), intermediated phase (T_1 > T_2), and low-temperature phase (T< T_2) are estimated at 0, 0.5, and 1, respectively. Since the covalent bonding prevents dimerization, ferrimagnetically-coupled magnetic moments are ordered in the low-temperature phase. The presence of large magnetic moments as well as the staging feature of the N-I transitions may provide a good arena for dynamical functionalities originating from the correlations among charge, spin, and lattice.

In order to ascertain the valence state in the intermediate phase, an x-ray diffraction measurement on a single crystal was performed at BL8B, Photon Factory. Figure 1 shows oscillation photographs at the 200 K and 220 K. Superlattice reflections with the modulation vector (0 1/2 1/2) are clearly observed at 220 K. Result of the crystal structure analysis at 240K suggests that two neutral chains (II and IV) with δ ~0 and two ionic chains (I and III) with δ ~1 are aligned to form an alternating stacking of N and I layers in the intermediate phase as shown in figure 2. This is the first observation of the self-organization of the N and I moieties.

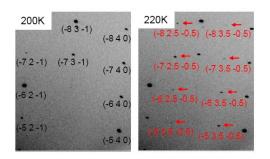


Figure 1 X-ray oscillation photographs.

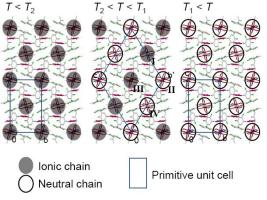


Figure 2 Arrangements of N and I chains.