Challenging experiments for high-T_c superconductors

Kazuyoshi Yamada WPI, Tohoku University

Final goal of the high-T_c research is to make clear answers to the following questions

What is the mechanism ? How to lift up T_c ?

My task here is to propose challenging experiments towards the final goal "Fish story (まゆつば話)" will be acceptable and better than no proposal

Three fundamental issues related with the mechanism

What happens in the pseudogap (PG) state ?

How to obtain direct evidence of vortex-like signal and its spatial correlation above $\rm T_{\rm c}$?

A fish story ? How to merge two phenomena ?

Proposed experiment

Study magnetic field dependence of the magnetic order -----> Collapse into the vortex-like state ????

Origin of material dependence of phase diagram (a professional version of fish story)

Nernst signal is also observed below X_c (lower critical concentration of SC)

Metallic properties already appear below X_c in LSCO?

Lu Li et al., cond-mat 0611731

Mobility of the Doped Holes and the Antiferromagnetic Correlations in Underdoped High- T_c Cuprates

Yoichi Ando, A. N. Lavrov, Seiki Komiya, Kouji Segawa, and X. F. Sun

Metallic transport already appears by dilute doping at high temperature

Carrier localization and hopping transport occur at low temperature

Variable range hopping conduction

 $\rho(T) \propto \exp((T_0/T)^{\alpha})$

Incommensurate spin density modulation precipitates in AFM order by dilute holedoping

Magnetic Bragg peak

Proposed experiment

Precise measurement of spin excitation as a function of temperature

Carrier localization effect at low temperature and metallic character at high temperature ?

What happened by stronger carrier localization ?

Carrier localization is enhanced by impurity

$$\rho(T) \propto \exp((T_0/T)^{\alpha})$$
$$T_0 = \frac{13.8}{k_B N(\epsilon_F) r_{loc}^2}$$

Hücker et al. PRB59,(1999)

Hiraka et al., JPSJ(2007)

Summary

(1) Pseudogap state

Direct evidence of superconducting fluctuation ? Relation with magnetic order ?

---> polarized neutron small angle scattering magnetic order under magnetic field

(2) Metallic transition by dilute doping

In LSCO metallic signature is seen even at dilute doping ---> precise temperature dependence of spin excitation in doped AFM

AFMI <----> spin-glass phase <---> AFMM

Clarify the relation between AFMM and spin-glass phases? ---> polarization analysis of spin fluctuation