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Mission of my talk

From the view point of
‘strongly correlated soft materials science’,
what can (will?) be realized
by pump-probe experiments

‘based on new light source’ in IMSS?
Examples

1. Laser-SR Technology has really opened the door for new
phenomena in correlated soft materials
(Melting of the Iced Charge;CO in EDO (THz) and
NSMO (X-ray))

2. Laser-SR technology has kicked off the “soft materials

dynamics” for molecular (CO) transport based on dynamical
structure
(Molecular Movie of Mb)



Important Merit of Strongly Correlatpd Soft Materials :
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Basic Problem :
PIPT can realize what cannot l‘))e achieved by thermodynamics

Why (EDO),PF, is important for the study of Photo-Domino effect?

(A) Insulator (I) Phase  Metal (M) Phase
Is it really I-M transition ?
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M.Chollet et.al., Science 307 (2005) 86.



100fs time-resolved reflection spectra
in wide photon (VIS-THz) energy region

10 K.Onda et.al. (PRL 101, 067403 (2008))
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Photoinduced Phase (0101)

side view of EDO-T
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High Temp. Phasg
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Low Temp. Phase (0110)

PIPT phase cannot be achieved by thermal excitation
False Ground State ! (Collaboration with Prof. Yonemitsu G.)



Laser-SR technology (Molecular Movie) has Kicked off
the new materials based on dynamical structure
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Nozawa et al. (2007) J. Synchrotron Rad. 14, 313.



Co oxides with Perovskite structure: Pr,,Ca,,C00;

(Estimation of the speed of the photo-induced M-I domain wall based
on the direct observation of movement of it)

Transport property
® M-I transition around 90 K

® The first oreder phase ransition with
hysteresis
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Laser-Compton X-ray source at ERL test
facility (60-150MeV)

R —— = 2v2E, . (1-cos0, )/(1+7207
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, Eejoctron = 60 MeV (y=117), 6, = 90 degree M &,
=42.4keV
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L—HF—sULA (1.55eV, 1mJ)D 7+ 8 : N, =4 x 1015 photons

BF/\>FhOEBFH(60MeV, 1nC): N, = 6 x 10? electrons
INFOKFENE: w=50x10%m

BF/\FO®E: h=50x10%m
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13LRABHT=Y.
Flux =1 x 10° phs/pulse/10%b.w.

10kHzD &=,
Flux =1 x 101° phs/sec/10%b.w.
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Subnanosecond-resolved 2Fo-Fc map
of photolysed myoglobin-CO contoured at 0.8s
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New structural science is surely

stimulating materials scientists Materials
Materials Synthesis
DeSIQn Combination CT Comp'exes
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Thank you for your attention !

CM: Yamada Conf. for PIPT
Nov. 11-15, 2008 in Osaka,

Please visit our Home-page :http://www.pipt.jp



