IMSS-Symposium, October 17, 2008

Magnetization "steps" in the spin-1/2 kagome lattice of volborthite

H. Yoshida

Y. Okamoto

RVB state, spin liquid or what? Iong-standing issue on the frustrated lattice

Outline

 General aspects on the kagome AF magnets
Volborthite vs Herbertsmithite common features of the S-1/2 kagome

GS of volborthite: spin glass and liquids

Magnetization "steps"

Materials: H. Yoshida, Y. Okamoto NMR: M. Yoshida and M. Takigawa LT Mag.: T. Tayama and T. Sakakibara HF Mag.: M. Tokunaga and K. Kindo (ISSP) ESR: S. Okubo and H. Ohta (Kobe Univ.) mSR: A. Fukaya and Y.J. Uemura (Columbia Univ.)

Materials: can we obtain a perfect frustrated lattice in a real material? Many obstacles: •interlayer coupling \rightarrow 3D long-range order Jarosite.... disorder SCGO, Herbertsmithite, LiNiO₂, ... distortion Volborthite, organics, ... long-range interactions • coupling to the lattice \rightarrow local singlet state

S-3/2 kagome lattice in $SrCr_8Ga_4O_{19}$ (SCGO)

FIG. 1. Structure of $SrCr_9Ga_3O_{19}$ showing only the Cr sites. The 2*a* layer is fully occupied, and the 12*k* and 4*f* layers are only 86% occupied. The relevant nearest-neighbor bond distances are shown in angstroms.

magnetoplumbite structure

~90% coverage in the kagome layer extra Cr ions exist

A. P. Ramirez, et al., PRL 64, 2070 (1990)

No LRO, but SG

S-5/2 Kagome lattice in Jarosite

 $\begin{array}{l} \mathsf{AFe}_3(\mathsf{SO}_4)_2(\mathsf{OH})_6 : \mathsf{Fe}^{3+}, \, 3\mathsf{d}^5 \\ \mathsf{A} = \mathsf{Na}, \, \mathsf{K} \to \mathsf{LRO} \, (q=0) \\ \mathsf{A} = \mathsf{H}_2\mathsf{O} \to \mathsf{spin} \, \mathsf{glass} \end{array}$

 $(D_3O)Fe_3(SO_4)_2(OD)_6$ 97% coverage $Q_{CW} = -700 \text{ K}: J = 50 \text{ K}$ $T_f = 13.8 \text{ K}$ x = 19 A at 2 Ksmall x, but no gap, why?

A. Harrison, *et al.*, Europhys. Lett. 42, 325 (1998)

S-1 kagome found in organics

N. Wada, *et al*., JPSJ 66, 961 (1997) K. Hida, JPSJ 69, 4003 (2000)

S-1/2 "mPerfect" kagome ZnCu₃(OH)₆Cl₂

ND diffraction by S.-H. Lee & A. Harrison

G. Nocera, MIT, JACS 127, 13462 (2005)

 $Zn_{x}Cu_{3-x}(OH)_{6}Cl_{2}$ x = 0: clinoatacamite $0.33 \le x < 1$: Zn-paratacamite x = 1: herbertsmithite Absence of LRO ~6% by NMR (Olariu) ~3% in a better sample A. Harrison spin freezing down to 50 mK by NMR, mSR, ac-c, ...

Monoclinic, C2/md(Cu1-Cu2) = 3.031 Å d(Cu2-Cu2) = 2.937 Å \angle Cu1-O-Cu2 = 105.6° (82.7°): J_1 \angle Cu2-O-Cu2 = 101.1° (91.5°): J_2 $J_{av} = (2J_1 + J_2) / 3$

Rhombohedral, *R*-3*m* d(Cu-Cu) = 3.414 Å \angle Cu-O-Cu = 119° : *J* \angle Cu-O-Zn = 96.9° : *J* ~ 0

 $DJ \leq 20\%$? cf. Sindzingre

Volborthite vs Herbertsmithite: c_{bulk}

Volborthite vs Herbertsmithite: C_{loc} c_{loc} from NMR Knight shift K: $K = Ac_{loc} / N_A$

Volborthite vs Herbertsmithite: defects

Volborthite

Herbertsmithite

3 – 10% Zn

 x_0 can be limited by 1 / x_{imp} in the dirty milit.

- The number of intact spins decreases rapidly with x_{imp} .
- Even for small x_{imp} , a defect may influence the surroundings.

Higher-quality sample: *c* down to 60 mK

No more broad component in a clean sample.

Impurity-induced spin-glass on frustrated lattices

Gapless or a very tiny gap means large *x*!

Maybe, x becomes very large as $T \rightarrow 0$, close to the quantum critical

Even a small x_{imp} can cause SG.

A spin glass transition may occur, when domains with staggered moments induced by defects overlap with each other.

Slowing down toward $T \sim 0.9$ K, but may not go to LRO!

Slow spin dynamics No anomalies in *c* and *C*

A step in *IVI* under a magnetic

 $H_{s1} = 4.3 \text{ T} \sim (1/30) J$ field Nothing before; free spins masked. dM I dH T = 0.06 K*dM / dH* (a. u.) 6 with less x_{imp} , 0.86 K after SG, 5 1.62 K Anomaly at 100 M / M_s 0.06 K $H_{\rm s1} = 4.3$ T, $\mu_0 H_{s1} = 4.3 \text{ T}$ $M = 0.022 M_{s}$ 3 1.62 K Spin flop? 2 $M = 0.022 \sim (1/45) M_{\rm s}$ 100*M / M*s **Metamagnetic?** 1000∆*M / M* but no LRO. 1 0.86 K 0 12 6 8 10 0 2 4 $\mu_0 H(T)$ J = 86 KTayama & Sakakibara

Phase diagram of volborthite: Summary

