Magnetic and Atomic Structures Studied by Soft X-ray Spectroscopies

Kenta Amemiya (KEK-PF)

# Outline

1. Magnetic structure (XMCD)

2. Surface and Interface (depth-resolved XAFS)

3. Future plans at a new soft X-ray beamline, PF-BL-16A

# Magnetic Structures Studied by L/T Geometry Angle-dependent XMCD

XMCD (X-ray Magnetic Circular Dichroism)

Element selectivity Quantitative determination of spin & orbital magnetic moments by using the sum rules



Angle-dependent XMCD ⇒ Magnetic anisotropy Separation of m<sub>s</sub> from m<sub>T</sub>



### Angle-dependent XMCD in Longitudinal (L) Geometry

#### Au/Co(2 ML)/Au(111)

Self-assembled Co islands due to a reconstruction of Au surface

All Co atoms are regarded to "interface" because of 2 ML thickness

⇒ Direct observation of interface magnetism

Angle-dependent XMCD  $\Rightarrow$  Direct determination of  $m_s, m_l^{\prime\prime}, m_l^{\perp}, m_T^{\prime\prime}, m_T^{\perp}$  T. Koide et al., Phys. Rev. Lett. 87, 257201 (2001)



#### Sum rules in Longitudinal (L) geometry



Orbital sum rule (L geometry)

$$\frac{[\Delta I_{L_3} + \Delta I_{L_2}]^{\theta}}{I_{L_3} + I_{L_2}} = -\frac{3 \cdot m_{orb}^{\theta}}{4n_h \cdot \mu_{\rm B}}$$

Spin sum rule (L geometry)

$$\frac{\left[\Delta I_{L_3} - 2 \cdot \Delta I_{L_2}\right]^{\theta}}{I_{L_3} + I_{L_2}} = -\frac{(m_{spin} + 7 \cdot m_T^{\theta})}{2n_h \cdot \mu_B}$$

B.T. Thole et al., PRL 68, 1943 (1992).P. Carra et al., PRL 70, 694 (1993).



#### **Determined Magnetic Moments**

T. Koide et al., Phys. Rev. Lett. 87, 257201 (2001)



# Cluster-size dependent phase transition

#### **Angle-dependent Sum Rules**



# Outline 1. Magnetic structure (XMCD) 2. Surface and Interface (depth-resolved XAFS) 3. Future plans at a new soft X-ray beamline, PF-BL-16A





# Extraction of Surface and Interface XMCD spectra

Amemiya et al., PRB 72 (2005) 201404(R).





Large in-plane surface orbital moment

#### **Depth-resolved Observation of Atomic Structures**

#### Co L-edge EXAFS





# Outline

 Magnetic structure (XMCD)
 Surface and Interface (depth-resolved XAFS)

3. Future plans at a new soft X-ray beamline, PF-BL-16A

# Soft X-ray Beamline BL-16A



Variable Polarization Circular & Linear (vertical/horizontal) Construction: Jun.-Oct. 2007 User Experiments: Oct. 2008





# **Expected Photon Flux at BL-16A**



# **Experimental Facilities**







# **Fast Polarization-Switching Project**

Twin APPLE-II type undulators for fast polarization switching (~10 Hz)



T. Hara et al., J. Synchrotron Rad. **3**, 426 (1998). Y. Saitoh et al., J. Synchrotron Rad. **5**, 542 (1998).

Lock-in technique  $\Rightarrow$  Observation of small (~10<sup>-4</sup>) dichroism

Undulator II will be installed in 2010

# **Detection of Small XMCD Signals**

T. Koide et al., Phys. Rev. Lett. 87, 256404 (2001)



**Observation of weak ferromagnetism** 



Precise investigation for phase transition phenomena

# Summary

Angle-dependent L/T geometry XMCD Determination of m<sub>s</sub>, m<sub>l</sub> and m<sub>T</sub> including their anisotropy

**Depth-resolved XAFS/XMCD** Atomic, electronic and magnetic Structures at surface and interface





#### **Future plans**







