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Overview

* Background to Type II Superconductors

* Muon spin rotation (#SR): what we can learn about
superconductivity from the vortex lattice

* Vortex correlations in single crystals of anisotropic

superconductors

- La, 4Sr,,Cu0O, (LSCO)
- Bi,,Sr, .. CaCu, O, (BSCCO-2212)

- Irradiated Bi, ,.Sr, . CaCu, O, (BSCCO-2212)

* Summary
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Background to Type II Superconductors
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Type II Superconductivity
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Coherence

Penetration depth A: length. 3
Magnetic extent Core size ~ €
~ A
~ A > Local internal
field h(r)
Superconducting
wavefunction

W(r)
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Layered superconductors e.g. High-T_cuprates

Superconducting
planes

- ‘Pancake’ vortices
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Vortex Interactions

Intra-layer repulsion

Inter-layer attraction

Electromagnetic, Josephson

Vortex-pin attraction -
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Vortex Interactions and Pinning lead to
Irreversibility
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Pinning ‘landscape’

Transition to glass state as scale of disorder increases
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Thermal disruption and melting
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The Vortex Zoo .....

‘“Vortex Matter’ Vortex glass

Links to soft condensed

matter:

nematics; H Vortex liquid

Disorder line
entanglement;

discotics;

Melting line

glass transitions;

: Vortex solid
colloids;
higher order correlations etc. T
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Muon Spin Rotation (#SR):
What we can learn about
superconductivity from the vortex lattice
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Internal Field




Shape of SR signal is closely related to spatial distribution of vortices

(‘shape’, ‘size’ and arrangement of vortices themselves)

Probability

Internal Field
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If we assume that the vortex lattice 1s ideal (perfectly ordered), we can
extract characteristic length scales such as the magnetic penetration

depth A(T,B) and the superconducting coherence length E(T,B)

o e.g. width (second moment)
5 / <AB%!"2 (T)ocL(T)
=
A <
T | AT (Mxng (M/me
Internal Field
However, vortex lattice may be far from ideal.............
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Vortex Correlations 1n Single Crystals of
Anisotropic Superconductors
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Example: La, (Sr, ,CuO, (LSCO)

Increasing anisotropy

s f
YBCO (T =93 K) LSCO (x=0.1) (T =29 K) = BSCCO-2212 (T =85 K)
A~1400 A A~3000 A A~1800 A
v~ 4 v>~ 40 y>~ 150
Ay=sy~50A Ay=s7~260 A A=s7~2300 A
Ay << Ay, Ay << Ay, Ay~ Ay

Long A, modest vy
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L.SCO: line width
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Vortex Glass
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Conventional ‘two body’ structure factor S(q)

1.64(c)

Second Moment (width)

<[AB]2> x f dgS@b (q) S

04

S(q)=F.T{pair density correlation functionqg(r)}
b(q)=F.T{Flux line local field h(r)} =1(1+g°\?)

Third Moment (skewness)

<[AB]3> « [/ dqld‘l25(3)(Q1a%)b(%)b(%)b(—% -q2)

s (@,.4,) = - (3p(a1)d0(a2)3p(~4q; — )
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High field: glassy order including
non-trivial triangular coordination
extending several lattice spacings

Menon et al., Phys. Rev. Lett. 97 177004 (2006)

Vortex Glass
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Vortex lattice/Bragg glass
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Typically alpha is positive (a>0) for either highly-ordered or
highly-disordered systems (although disorder reduces value of o)

Theoretically, negative alpha (0<0) occurs only for a very
particular combination of 2-body (S(q)) and 3-body (S®)

correlations
1.64(c)
1.2-
0.8
0.4
2 4 6 8 0 12 14
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Example: B, ;.Sr, ¢ CaCu, Og, 5 (BSCCO-2212)

Increasing anisotropy

YBCO (T =93 K)

A~1400 A
v~ 4
Ay=sy~50A

Ay << Ay,
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-

LSCO (x=0.1) (T =29 K)

A~3000 A
v>~ 40

Ay =57y ~260 A
Ay << Ay,
Long A, modest vy

BSCCO-2212 (T =85 K)

A~1800 A
>~ 150

Ay=57~2300 A
7\'JN}\'ab
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Field perpendicular to the planes in only screened
on a length scale ~A,;, >> s (plane spacing)

Longitudinal fluctuations ‘wash out’
the high fields originating in the cores

—

Both width o and skewness
o are reduced

p(B)

B
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BSCCO with Columnar Defects B 5= 2000 G

Irradiagion with heavy 1ons (17.7 GeV U ions)

Columnar Defects
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The Matching Field B b Applied for for which the areal

density of vortex lines = density of ‘columnar defects’

B=B¢
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If positions of vortices were truly random at B= B o WSR

line width would extremely large, and S(q) would be
trivial.

In reality there are always some 2-body correlations even at B 5

see e.g. S.L. Lee et al., a Phys. Rev. Lett. 81 5209 (1998).
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<[AB]2> e f d qu (q)bz(q) Related to 2-body correlations
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Width 1s always large in irradiated sample:
Defects keep the vortices ‘rigid’
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2\3 ) % 1. a>0 everywhere
«(sF) /(T )
2. At low T, o has
minimum at B . implies 3-

4000
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Mimima develop at temperatures above the irreversbility line (IL)
where the vortices become much more mobile
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Competition in free energy between
interlayer coupling (Josephson, dipolar) and
gain in entropy as pinning ‘sites’ start to
become filled.
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3500

3000

H (G) 2500}




Summary

Bulk #SR is useful for probing the vortex state in single crystals of
superconducting materials.

1SR may even yield information on classical three body correlations in
disordered vortex systems, which are hard to measure by other methods.

Characteristic length scales (&, A) can be extract if one fully undertands the
vortex state and how to model it. The state of order of the vortex system
has a profound influence on the moments of the uSR line shapes and
quantitative interpretation of these moments must be carefully considered.
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