

University of St. Andrews

Using muons to probe spatial correlations in vortex matter systems of superconductors

Steve Lee, David Heron, Stephen Lister, Soumya Ray, Vikash Venkataramana

G.I. Menon

J. Mesot, R. Gilardi, J. Kohlbrecher

Alan Drew

SUPA, University of St. Andrews, UK

C.I.T., Taramani, Chennai, India

PSI/ETH Zürich, Switzerland

Université Fribourg, Switzerland

Overview

- Background to Type II Superconductors
- Muon spin rotation (μ SR): what we can learn about superconductivity from the vortex lattice
- Vortex correlations in single crystals of anisotropic superconductors
 - $La_{1.9}Sr_{0.1}CuO_4$ (LSCO)
 - $Bi_{2.15}Sr_{1.85}CaCu_2O_{8+\delta}$ (BSCCO-2212)
 - Irradiated $Bi_{2.15}Sr_{1.85}CaCu_2O_{8+\delta}$ (BSCCO-2212)
- Summary

Background to Type II Superconductors

Type II Superconductivity

Vortex Interactions and Pinning lead to **Irreversibility**

Transition to **glass state** as scale of disorder increases

Thermal disruption and melting

Muon Spin Rotation (μ SR): What we can learn about superconductivity from the vortex lattice

If we assume that the vortex lattice is *ideal* (perfectly ordered), we can extract characteristic length scales such as the magnetic penetration depth $\lambda(T,B)$ and the superconducting coherence length $\xi(T,B)$

Vortex Correlations in Single Crystals of Anisotropic Superconductors

Example: La_{1.9}Sr_{0.1}CuO₄ (LSCO)

Increasing anisotropy

00000

YBCO (T_c=93 K) $\lambda \sim 1400 \text{ Å}$ $\gamma \sim 4$ $\lambda_{J} = s \gamma \sim 50 \text{ Å}$ $\lambda_{J} \ll \lambda_{ab}$ LSCO (x=0.1) (T_c=29 K) $\lambda \sim 3000 \text{ Å}$ $\gamma > \sim 40$ $\lambda_J = s \gamma \sim 260 \text{ Å}$ $\lambda_J << \lambda_{ab}$ Long λ , modest γ BSCCO-2212 (T_c=85 K) λ~1800 Å γ>~ 150 λ_J = s γ ~ 2300 Å λ_J ~ λ_{ab}

Interpretation of second moment (line width) Disorder of **rigid** vortices always leads to **increase in width** of distribution

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

Menon *et al.,* Phys. Rev. Lett. **97** 177004 (2006)

5000 1.0 Vortex Glass 4500 0.8 4000 0.6 3500 *Negative* α 0.4 H(G) зооо 0.2 2500 0.0 2000 -0.2 -0.4 1500 Vortex lattice -0.6 1000 Positive α -0.8 500 20 10 15 25 5 T(K)

Low field: 'trivial' triangular coordination Vortex lattice/Bragg glass

IMSS, Tsukuba, Friday 17th October 2008

High field: glassy order including *non-trivial triangular coordination* **extending several lattice spacings**

Typically **alpha is positive** (α >0) for either highly-ordered or highly-disordered systems (although disorder reduces value of α)

Theoretically, **negative alpha** ($\alpha < 0$) occurs only for a very *particular combination* of **2-body** (**S**(**q**)) and **3-body** (**S**⁽³⁾) **correlations**

Example: $Bi_{2,15}Sr_{1,85}CaCu_2O_{8+\delta}$ (BSCCO-2212) **Increasing anisotropy** 00000 00000 BSCCO-2212 (T_=85 K) LSCO (x=0.1) (T_c=29 K) YBCO (T_=93 K) λ~1800 Å λ~1400 Å λ~3000 Å γ>~ 150 γ>~ 40 γ~ 4 $\lambda_{J} = s \gamma \sim 50 \check{A}$ $\lambda_{\rm J} = {\rm s} \ \gamma \sim 260 \ {\rm \AA}$ $\lambda_{\rm J} = {\rm s} \ \gamma \sim 2300 \ {\rm \AA}$ $\lambda_{\rm I} \ll \lambda_{\rm ab}$ $\lambda_{\rm I} \ll \lambda_{\rm ab}$ $\lambda_{\rm I} \sim \lambda_{\rm ab}$ Long λ , modest γ

The **Matching Field** B_{ϕ} : Applied for for which the areal density of vortex lines = density of 'columnar defects'

If positions of vortices were truly random at $B = B_{\phi}$, μSR line width would *extremely large*, and S(q) would be trivial.

In reality there are always some 2-body correlations even at B_{ϕ}

see e.g. S.L. Lee et al., a Phys. Rev. Lett. 81 5209 (1998).

Structure Factors

-Measured by Small-angle neutron scattering (SANS)

Mimima develop at temperatures *above the irreversbility line* (IL) where the vortices become much *more mobile*

Summary

Bulk μ SR is useful for probing the vortex state in single crystals of superconducting materials.

 μ SR may even yield information on classical three body correlations in disordered vortex systems, which are hard to measure by other methods.

Characteristic length scales (ξ, λ) can be extract *if* one fully undertands the vortex state and how to model it. The *state of order* of the vortex system has a profound influence on the *moments* of the μ SR line shapes and quantitative interpretation of these moments must be carefully considered.