Charge Dynamics in (ω, Q)-Space Studied by Inelastic X-ray Scattering

Jun'ichiro Mizuki

Quantum Beam Science Directorate Japan Atomic Energy Agency (JAEA)

Inelastic X-ray scattering $= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

- The first term: non-resonant inelastic scattering
 - All electrons (Ze) are contributed \Rightarrow phonon excitation
- The second term: resonant inelastic scattering (RIXS)
 - Electrons on the specific atom are contributed.
 - Resonance enhancement
 - Element specific \Rightarrow electronic excitation

RIXS of 3d transition elements

K-edge (1s→4p, several keV)
(a) absorption
(b) interaction between
1s core-hole and 3d electron
(c) X-ray emission

Effects of electron-hole interaction on the dynamic structure factor: Application to nonresonant inelastic x-ray scattering

J. A. Soininen Department of Physics, POB 9, FIN-00014, University of Helsinki, .

Eric L. Shirley Optical Technology Division, Physics Laboratory, National Institute of Standards and Technology (Received 24 January 2000)

P. R. B. 61 ('00) 16423 7.0 : including ele. -ho. inter. 1.50**Г**Х Intensity [arb. units] 6.0 : not including 5.0 ele.-ho. Inter. -Im(c⁻¹(q,0)) .0 D.48FX _iF GaN 3.0 insulator semiconductor .36FX 2.0 - гнг 1.0 0.23TX 0.035 10 30 15 20 10 12 14 8 Energy loss [eV] Energy loss [eV]

Set-up of Inelastic Scattering Spectrometer at BL-11XU

Observed energy Resolution at 6.5 keV

Schematic diagram of electronic states

The electron involved in dynamical density response function can be selected by RIXS !

K. Ishii, J. M. et al., PRL. 94 ('05)207003

toward future

Required energy resolution

ΔE~0.5eV

ΔE~0.1eV

Inter-band excitation: "U"~2eV

Excitations across the Mott / charge-transfer gap

Intra-band excitation: "t"~0.4eV

Excitations within bands across the Fermi level

Low-energy excitation: "J"~0.1eV

Excitations related to the spin degree of freedom

ΔE~0.05eV

Dynamical structure factor of IXS in the phonon energy region

$$\varepsilon(Q,\omega) = \varepsilon_{el}(Q, \omega) + \varepsilon_{ion}(Q, \omega) - 1$$

$$\downarrow$$

$$\chi(Q, \omega) = -(Q^2/4\pi^2N) 1/\varepsilon(Q, \omega)$$

$$\downarrow$$

$$I(Q, \omega) = F(\varepsilon_{el}) + G(\varepsilon_{el}) \cdot H(\varepsilon_{ion})$$

$$\downarrow$$

$$I(Q, \varepsilon) = F(\varepsilon_{el}) + G(\varepsilon_{el}) \cdot H(\varepsilon_{ion})$$

How to get the information on electric dynamical function

Collaboration between X-rays and Neutrons

IXS spectrum

- 1. Measure the phonon spectrum and dispersion by Neutron Inelastic Scattering.
- 2. Derive the information on the width, eigenvector and structure factor of phonons, and calculate the phonon intensity of IXS. (C-IXS)
- 3. Compare the C-IXS with the observed IXS spectrum.

Phonon DOS of Fe-based super.

T. Fukuda, et al., J. Phys. Soc. Jpn. 77 ('08) 103715

In what space should we measure physical properties?

Dynamics in time domain

Collaborators for RIXS:

Experiment

K. Ikeuchi, I. Jarrige, M. Yoshida, T. Inami, J. Mizuki (SPring-8/JAEA)H. Hiraka, K. Yamada, K. Kudo, Y. Koike, Y. Murakami (Tohoku Univ)Y. Endoh (IIAS)

Theory

K. Tsutsui (SPring-8/JAEA)

- T. Tohyama (Kyoto Univ.)
- S. Maekawa (Tohoku Univ.)

Beamline

H. Ishii, Y. Q. Cai (Taiwan-BL, SPring-8)

Collaborators for Fe- based Superconductors:

JAEA

T. Fukuda, S. Shamoto, M. Ishikado, J. Mizuki, M. Arai,

SPring-8/RIKEN, JASRI

• A. Q. R. Baron, S. Tsutsui, H. Uchiyama

• H. Nakamura, M. Machida

AIST

• A. Iyo, H. Kito, H. Eisaki

H. Hosono

Importance of the collaboration between Experiment and theory

