X-ray Scattering Studies of Dynamics in Strongly Correlated Electron Systems

From Femto-seconds to Minutes

J.P. Hill Brookhaven National Laboratory

Collaborators

Cuprate work:

Y-J. Kim, D. Ellis, S. Wakimoto (U. Toronto, Canada)

R.J. Birgeneau (U. C. Berkeley, USA)

- T. Gog (APS, USA)
- D. Casa (APS, USA)
- G. Blumberg (Lucent Technologies, USA)

Manganite work

J.J. Turner, S. Kevan (U. Oregon, USA)M. A. Pfeifer (U. Latrobe, Australia)K.J. Thomas (BNL, USA)K. Chesnel (ALS, USA)Y. Tomioka (CERC, Japan)Y. Tokura (CERC, Japan)

Outline

- 1. Dynamics in the Energy Domain
 - Resonant Inelastic X-ray Scattering
 - Recent results in the cuprates
- 2. Dynamics in the Time Domain
 - Coherent x-ray Scattering
 - Recent results in the manganites

- 3. Future
 - NSLS-II
 - Instrumentation

1. Dynamics in the Energy Domain

Inelastic X-ray Scattering

Elastic scattering (W = 0) gives static properties.

Inelastic scattering ($\omega \neq 0$) gives dynamic properties.

Electronic Excitations

- 1) Excitation spectrum determines the dynamic response of material.
- 2) Excitation spectra provide stringent test of theory.
- 3) "High-energy physics" of strongly correlated electron systems controls their behavior:

$$t \sim 1 \text{ eV}, U \sim 8 \text{ eV}, D \sim 2 \text{eV}$$

Resonant Inelastic X-ray Scattering

But....IXS from electronic excitations is weak (unlike the case for phonons)

Resonant IXS is > 100 x Non-Resonant IXS

10 years of RIXS Progress: CuGeO₃

1999	1 cps	1500 meV	X21, NSLS
2002	6 cps	300 meV	9IDB, APS
2006	50 cps	115 meV	30IDB, APS
2007	600 cp	s 90 meV	30IDB, APS

Figure of merit = count rate/resolution, increased by 10⁴!

 La_2CuO_4

DE=120 meV

9IDB, APS

Something New at 500 meV...

JPH, G. Blumberg, Y-J. Kim, D. Ellis et al., Phys. Rev. Lett (2008)

Characteristics of 500 meV mode:

- Strongly peaked around (p,0)
- Strongly doping dependent
- Present only for e parallel to c
- Rotates polarization of photon.

2-Magnon Scattering?

Calculated 2-magnon DOS Single Magnon Dispersion Surface x_10⁻³ x 10⁻³ units) (arb. ntensity (2 0.5 0.5 0.2 0.6 0.4 H 0 0 [0, k, 0] rlu in 1.64 Å⁻¹ [h, 0, 0] rlu in 1.64 Å⁻¹ 0.8

R. Coldea (PRL, 2001)

2-magnon DOS has strong peaks at (p,0) at ~500 meV

Calculated energy and momentum behavior, and doping dependence all resemble two-magnon scattering

N.B. Predicted by Tsutsui, Tohyama and Maekawa (1999)

Used resonant inelastic x-ray scattering to look at excitations in mid-IR region of the cuprates

- Observed a new peak at 500 meV
- Peak occurs at (p,0). Softens, and broadens, away from there. Strongly doping dependent. Rotates the photon polarization
- Consistent with it being due to 2-magnon scattering.
- Future experiments will study the temperature dependence and detailed q-dependence to make the assignment unambiguous.

2. Dynamics in the Time Domain

Coherent X-ray Scattering

Coherent Scattering: Dynamic Speckle

Speckle pattern characteristic of domain structure:

An Orbital Glass?

 $Pr_{0.5}Ca_{0.5}MnO_3$

S. Grenier, JPH, *et al.* PRB **69** 134419 (2004) K.J. Thomas, JPH, *et al.* PRL **92** 237204 (2004)

Orbital Speckle Observed

J.J. Turner et al., New Journal of Physics (2008)

Mn LIII edge 10 **m**n pinhole

Speckle Patterns are Largely Static

Space

Time

T = 205 K

Some Dynamics Close to Transition

Correlations between images at fixed temperature drop off slightly near the orbital ordering transition temperature:

J.J. Turner et al., New Journal of Physics (2008)

Used soft x-ray coherent scattering (correlation spectroscopy) to look at orbital domains in a half-doped manganite.

- Observed "orbital speckle"
- The speckle was static at low temperatures therefore the domains are static at low temperatures
- Even very close to the transition, (correlation length has halved to $\sim 100A$), the speckle was still largely static
- BUT, there is a small component close to the transition that is dynamic. Time constant is ~ 5 mins

3. National Synchrotron Light Source-II

- Faster time scales

Inelastic X-ray Scattering Beamline

NSLS-II: Yong Cai

Hard X-ray Coherent Scattering

Conclusions

Strongly correlated electron systems exhibit dynamics over a wide range of time and space scales.

Inelastic x-ray scattering is a powerful probe of the very fast dynamics:

- Now ~ 2 meV 10's eV
- NSLS-II 0.1 meV 10's eV

Coherent x-ray scattering is a powerful probe of long length scale, slow dynamics

- Now ms to minutes
- NSLS-II **m**s to minutes

