IMSS Symposium – Materials Structure Science using Synchrotron Radiation, Neutrons and Muons - October 16-17, 2008

Angle-resolved photoemission spectroscopy of high-temperature superconductors: Present status and outlook

Atsushi Fujimori University of Tokyo

Collaborators

T. Yoshida, S. Ideta, M. Hashimoto, M. Ikeda, W. Malaeb (Univ. of Tokyo)

- K. Tanaka, X.-J. Zhou, D.H. Lu, Z.-X. Shen (Stanford Univ.)
- Z. Hussain, W.L. Yang (Advanced Light Source)
- K. Ono, M. Kubota (KEK-PF)
- A. Ino, M. Arita, H. Namatame, M. Taniguchi (HiSOR, Hiroshima Univ.)

High-resolution ARPES station BL-28A at Photon Factory

ARPES endstation

Staff: K. Ono, M. Kubota, N. Kamakura (KEK-PF) User group: A. Fujimori, T. Takahashi, Y. Aiura, T. Saitoh, K. Ozawa,

hn = 35-200 eV

Sample manipulator with two-axis rotation

Angle-Resolved Photoemission Spectroscopy (ARPES)

Band structure and Fermi surface in high-*T_c* cuprates

d-wave superconducting gap in high-*T_c* cuprates

 d_{x2-y2} symmetry

Order parameter $D(\mathbf{k}) = D_0(\cos k_x a - \cos k_y a)$

BCS theory of *d*-wave superconductor

Outline

- Pseudogap, Fermi arc and superconducting gap
- Coupling of electron to Boson excitations

Pseudogap, Fermi arc and superconducting gap

Temperature-dependent pseudogap opening

Temperature-dependent pseudogap opening

Ch. Renner et al., PRL, '98

Temperature-dependent pseudogap opening

Pseudogap phenomena in high- T_c cuprates

Pseudogap opening and Fermi "arc" formation

M. R. Norman et al. Nature '98

T. Yoshida et al., PRB'06

Distinct superconducting gap and pseudogap?

mon measurements of penetration depth

Andreev reflection

G. Deutcher, Nature '99

C. Panagopoulos, PRL '98

Two gap energy scales D^{\dagger} and D_0 in underdoped Bi2212

K. Tanaka et al., Science '06

Two gap energy scales D^{*} and D₀ in underdoped La_{2-x}Sr_xCuO₄

ARPES spectra on Fermi surface

Two gap energy scales D^{*} and D₀ in underdoped cuprates

 $D(k) = D_0(\cos k_x a - \cos k_y a)$ near node

K. Tanaka et al., Science '06

Temperature dependence of superconducting gap/pseudogap in underdoped Bi2212

Superconducting gap D_{sc} vs T_c

M. Oda et al, JPSJ '00 P.A. Lee and X.G. Wen, PRL '97

Superconducting gap/pseudogap in single, double and triple layer cuprates

Dependence of D₀ and $T_{c,max}$ on the CuO₂-layer number

E. Pavarini et al., PRL '01

T.Tohyama and S. Maekawa, Supercond. Sci. Technol. '00

Dependence of $T_{c,max}$ **on material parameters**

Relationship for optimally-doped LSCO, Bi2212, Bi2223

Possible origin of pseudogap? (1) Antiferromagnetic fluctuations

Possible origin of pseudogap? (2) *d*-wave pairing fluctuations

Y. Wang et al. PRB '01

Possible origin of pseudogap? (3) RVB - Resonating Valence Bonds

Possible origin of pseudogap? (4) Time-reversal symmetry breaking

Possible origin of pseudogap? (5) *k*-dependent Mott transition

CDMFT calc

M. Civelli et al., PRL '05 Y.Z. Zhang and M. Imada, PRB '07

Possible origin of pseudogap? (6) CDW, polaron effects

Fermi arc in Na_xCa_{2-x}CuCl₂O₂

Fermi surface nesting?

B 24 mV

Checkerboard pattern?

Cluster glass in STM?

K.M. Shen et al., Science '05

Y. Kohsaka et al., Science '07

Short summary 1

• Superconductivity in high- T_c cuprates occurs on the Fermi arc of length L_a .

 T_c is determined by the paring strength D_0 and the available electron density $\propto L_a$: $T_c \propto L_a D_0$, which explains most of peculiar features of the high- T_c cuprates.

- Pseudogap magnitude D* and L_a are *independent* of the CuO₂ layer number while D₀ and hence T_c are *dependent* on the CuO₂ layer number.
- Origin of the pseudogap/Fermi arc???

Coupling of electron to Boson excitations

Boson-mediated d-wave superconductivity

Cooper pair formation

Superconducting gap + boson structure

Scattering of quasi-particle by Boson excitation

Electron-Boson coupling

Superconducting gap + boson structure

W_q: Boson energy

Evidence for electron-phonon coupling from tunneling spectroscopy

I. Giaever et al., PR '62 W.L. McMillan and J.M. Rowell, PRL '65

~70 meV kink in the nodal direction

New interpretation **Previous interpretation** W₂~70meV a LSCO Bi2212 Bi2201 b С 'sub kink" δ 0.12 0.16 0.21 70 meV S $T > T_c$ -100 Normalized Re δ • 0.21 δ 0.07 ₩~ 35 meV 0.15 • 0.24 Energy (meV) • 0.22 T < T-200 0.0 d LSCO f е Bi2212 т $\delta = 0.15$ $\delta = 0.16$ D_0 Bi2212 ~ 35 meˈV -100 ~ • 20K • 20K φ 100K • 50K 0.00 -0.10 130K $E - E_{\rm F} \, ({\rm eV})$ -200 1 0 1 0.0 **Boson energies** 0 $W_1 \sim 35 \text{ meV}$ Breathing mode W₂ ~ 70 meV ₩,~ 70 meV W. S. Lee et al., PRB '08 A. Lanzara et al., Nature '01 Theory: A. W. Sandvik et al., PRB '04

~95(!) meV kink in the trilayer cuprate Bi2223

Phonon scenario of ARPES kinks

T. P. Deveraux et al. PRL '04

Kink in ARPES spectra

Coupling to magnetic resonance at W₄~ 40 meV

Inelastic neutron scattering spectra

cf) Phonon scenario

P. Bourges et al., in *High Temperature* Superconductivity,

T. P. Deveraux et al. PRL '04

Phonon anomalies in conventional BCS superconductors

Phonon dispersions in NbC by neutron scattering

W. Hanke et al., PRL '76

Corresponding $W_2 \sim 70$ meV phonon anomalies in high- T_c cuprates

Corresponding W_{\sim} 35 meV phonon anomalies in high- T_c cuprates

Raman shifts in YBa₂Cu₃O_{7-d}

Short summary 2

- Electrons are coupled to Boson excitations, which yield kinks in ARPES spectra and may provide glue for Cooper pairing.
- Kinks at $W_2 \sim 70$ meV are due to breathing-type, optical phonons. $\Delta^* \vdash \top < \top^*$
- Kinks at W₁ ~ 35-40 meV are due to bond-buckling($\infty L_a \Delta_0$) phonons or magnetic resonance.

 $(0,\pi)$

 $\Delta(k)$

(0,0)

Outlook

- Understanding the origin of the pseudogap/Fermiarc and the CuO_2 layer number dependences of the pairing strength D_0 and hence of $T_{c.max}$ will provide a key to elucidate the mechanism of high- T_c superconductivity.
- Understanding the momentum, temperature, doping, and CuO₂ layer number dependences of kinks in ARPES spectra will also provide a key to understand the mechanism of high- $T_{c\Delta(k)}$ Δ_0 superconductivity. Close collaboration between ARPES, neutron and x-ray studies are indispensable.

(0,0)