Quasi-2D d-spin ordering in a 3D Fe perovskite studied by Resonant Soft X-ray Scattering

J. Okamoto¹, D. J. Huang^{2,3}, K. S. Chao⁴, S. W. Huang⁴, C.-H. Hsu¹, A. Fujimori⁵, A. Masuno⁶, T. Terashima⁷, M. Takano⁸, and C. T. Chen¹
¹Condensed Matter Research Center, IMSS, KEK, Ibaraki 305-0801, Japan
²National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
³Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
⁴Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
⁵Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
⁶Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan

⁷Research Center for Low Temperature and Materials Science, Kyoto University, Kyoto 611–0011, Japan

⁸Institute for Integrated Cell-Material Science, Kyoto University, Kyoto 606-8501, Japan

Fe perovskite $La_{1/3}Sr_{2/3}FeO_3$ shows charge disproportionation, where average $3Fe^{11/3+}$ ions are separated into Fe^{3+} and Fe^{5+} with the ratio of 2 by 1 [1]. Neutron scattering revealed that charge ordering appears along [111] direction with the 3-hold period and spin density wave orders along the same direction with the 6-hold period [2]. We investigated charge and magnetic transitions in charge disproportionation of perovskite $La_{1/3}S_{r2/3}FeO_3$ thin film by hard X-ray scattering and resonant soft X-ray scattering at Fe L₃ edge. Temperature-dependent measurements reveal that $La_{1/3}Sr_{2/3}FeO_3$ exhibits anomalous two-domain transitions of spin-charge ordering of Fe 3*d* spins (and O 2*p* holes) in the 3*D* Fe perovskite. Upon cooling, the formation of the ferromagnetic and charge-disproportionated $Fe^{3+}-O-Fe^{5+}-O-Fe^{3+}$ trilayers precedes the development of 3*D* magnetic order.

References

[1] M. Takano et al., J. Solid State Chem. 39, 75 (1981).

[2] P. D. Battle et al., J. Solid State Chem. 84, 271 (1981).