量子ビームを用いたソフトインターフェースの 分子鎖凝集状態評価

Analyses of Molecular Aggregation States of Soft Interfaces Utilizing Quantum Beam

九州大学・先導物質化学研究所 JST/ERATO ソフト界面プロジェクト 高原 淳

Takahara Soft Interfaces

takahara@cstf.kyushu-u.ac.jp http://takahara.ifoc.kyushu-u.ac.jp

- 1. はじめに
- フルオロアルキルアクリ レート系高分子の表面分
 子鎖凝集状態の GIWAXDによる解析
- ポリ(フルオロアルキルア クリレート)ブラシの超臨 界二酸化炭素中での膨 潤挙動(NR)
- 高分子電解質ブラシの水
 界面での分子鎖凝集状
 態評価(NR)

ソフトインターフェースの構造 と物性の関係

1. はじめに

ソフトインターフェースとは? ソフトマター (プラスチック、ゴム、ゲル、液晶、生体膜など)を形成する界面

- †固体金属やセラミクスの場合、
 - 界面の分子運動は"室温"で凍結

† ソフトインターフェースは、

- •有限の厚み(広がり)を有する
- •動的な特性を有する(様々な階層の分子運動)
- •界面が様々な機能を持つ(能動的)
- •階層構造による高次機能
- •多様な環境下で機能を発揮(空気、水など)

ソフトインターフェースはその複雑さ故、基礎科学が確立されていない.

- ・化学的に精密に設計された表面の欠如
- ・様々な環境における構造や物性、特に動的特性の評価法の未確立

1945年にノーベル物理学賞を受賞し、パウリの原理で有名なパウリは、「固体は神が作りたもうたが、表面は悪魔が作った」と述べている。しかし、表面・界面の有する特異的な性質が、現代社会で重要な様々な機能デバイスの物性を支配している。

どのようなところでソフトインターフェースは活躍しているのか

濡れ性制御・汚れ防止

摩擦·摩耗

接着·粘着·剥離

コンタクトレンズ ステント・ガイドワイヤー

Contraction of the second distribution of the second second second second second second second second second se

バイオセンサ

フレキシブル電子回路

生体材料、精密電子機器、センサー、自動車など最先端の分野で界面の特性が機能物性を 制御している

2. フルオロアルキルアクリレート系高分子の表面分子鎖凝集状態のGIWAXDによる解析

GIWAXD

In-plane GIWAXD

Out-of-plane GIWAXD

Diffracted lattice plane

Incident X-ray

・膜面に垂直方向の周期性

・膜面に平行方向の周期性 (平行に配列したラメラ構造の周期).

Diffracted X-ray

2θ

GIXD BL-13XU、BL-40B2 at SPring-8

- q: Scattering vector ($=4\pi \sin\theta/\lambda$) /nm⁻¹
- θ ; Bragg angle/°, λ : Wavelength of incident X-ray/nm

Detector

PFA-C₈の表面分子鎖凝集構造

ナノインプリントによるPFA-C8への表面微細構造形成

 $5 \,\mu\text{m}$

5,000x 2.00 µm WD:14.0mm 5kV 2007/02/20 19:18:56 S

Soft Matter, 4 (2008).

なぜ室温でインプリントできるか 結晶性であるが平滑な薄膜 長鎖フルオロアルキル基の結晶内での弱い分子間相互作用

GIWAXD at SPring-8 BL40B2

高度に配向したFA基

FA基間の分子間力が 弱いので変形可能

里芋の葉のように超撥水性を示す表面を作る (ナノインプリントを繰り返し、蓮の葉様の構造を形成する)

撥水性材料を利用した液体ビー玉

撥水性の材料の表面では水滴が丸くなる。 水を撥水性の物質で覆うとどうなるか?

生物ではアブラムシの一種が樹液を摂取し、排 泄物として分泌する甘露を撥水性の物質で覆い ビー玉状にして、自分自身が甘露に捉えられな いようにしている。

→液体の梱包、輸送、ミクロ反応容器としての利 用

 $\gamma_{SV} = 7.43 \text{mN m}^{-1}$ (CH₂,CH) Hydrophobic grains =O water $(CH_2)_2$ $(CF_2)_{7-}$

substrate

CF₃

液体ビー玉の特徴的な振る舞い-水面に浮く水滴

浮く (表面が水をはじくとき)

Hydrophobic grains

water

ERATO

水面上に浮く水のビー玉

Contraction of the second s

磁石で動く液体ビー玉ー磁性イオン性液体の利用

通常「塩」は食塩のように常温下では固体だが、塩を構成するイ オンを比較的サイズの大きなある種の有機イオンに置換した場 合、融点が低くなり、室温付近でも液体状態で存在するようにな ることがある。これをイオン液体と呼ぶ。その中でも磁性を示す ものを磁性イオン液体と呼ぶ

3. ポリ(フルオロアルキルアクリレート)ブラシの表面構造と超臨界二酸化 炭素中での膨潤挙動(Stony Brook大 古賀忠典先生との共同研究) Surface-initiated ATRP of FA-C₈

Diffraction peak of $q_{xy} = 12.6 \text{ nm}^{-1}$ in In-plane GIWAXD is attributed to ordering of Rf groups along perpendicular direction to the substrate.

Thicker brush (thickness > 40 nm) showed diffraction in Out-of-plane GIWAXD profile originatedKyu:from Lamella structure.Kyu:H. Yamaguchi et al. , Polym. J., 40, 854-860(2008).

ومنطوع ومراقعة الأرباق وخراري ويقاده

Molecular Aggregation Structure of PFA-C₈ Brush Thin Film

High Pressure Neutron Reflectivity (NR)

~Ideal tool to determine the in-situ film quality under compressed gases ~

Neutron Reflectivity

NG7 Neutron Reflection Spectrometer @ National Institute of Standards and Technology (NIST)

Data analysis for density profiles

Alternative measures of solvent quality

was significantly improved above 10MPa.

4. ポリマーブラシを用いた表面化学組成制御による材料表面の超親水化

親水性ポリマーブラシの調製と特性解析 モノマー 1および MPCの表面開始重合方法 アルゴンガス 1 / CuBr / Sparteine Linear anisole / 65 °C Polymer **MPC** / CuBr / Me₂bpy MeOH / 25 °C Polymer 基板とフリー開始剤の両方から **Brush** 同時にポリマーが生長 Br Characterization OEt Br H₃C-C-CH₃ Linear Polymer : NMR, SEC, IR, DSC **Free Initiator** C=O (Sacrificial Initiator) Polymer Brush : IR, AFM, XPS, NR $(\dot{C}H_2)_6$ Graft density CH_3 CH_3 $\sigma = 0.22$ chains/nm² $(CH_2 - \dot{C} -)_n Br$ CH₂-C-Initiator-COOCH₂ CH CH₂ immobilized Si -COOCH₂CH₂-OPO₃CH₂CH₂N(CH₃)₃ wafer PMPC PDMM

双性イオン高分子で超親水性が実現できる

Water thin layer act as anti-stain surface that resembles the characteristics of a snail shell

中性子反射率測定 (ARISA@KENS 鳥飼准教授との共同研究) スリット 検出器 入射中性子ビーム 反射中性子ビーム 石英基板 θ \$22772 &2 27777 272757275 27873 S1 DS S2 テフロン容器 888 ポリマーブラシ 波長 = 0.12~0.60 nm (角度分解能 = 5.0%) 重水 000 照射面積(試料上の長さ) = 55 mm カウンター 入射角 = 0.3°のときS1=0.68 mm, S2=0.14 mm, DS=10 mm 入射角 = 0.6°のときS1=1.33 mm, S2=0.27 mm, DS=10 mm Parratt理論によるフィッティング曲線 散乱長密度分布を仮定 反射率曲線 10^{0} 石英/重水 10⁻⁴ nm⁻² 6.0 Parratt32 石英/重水 10 10 ′重水 石英+ブ 中性子反射率 10⁻² 10⁻³ 中性子反射率 石英+ブラシン重水 10^{-2} フィッティングパもメータ 散乱長密度 / 5.0 重水・石英の散乱長密度(固定) 10⁻³ 10^{-3} ・ポリマーの散乱長密度 10^{-4} 10 ・ブラシ膜厚 40 ・界面の粗さ 10⁻⁵ 10 40 60 20 表面からの距離/nm 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 *q* / nm⁻¹ q / nm^{-1} 重合度の分布 ベストフィットが得 4π られるようパラメー $\sin\theta$ x = 10タを微調整 $- \bigcirc - \bigcirc x = 8$ Mw/Mn=1.05の場合 実際の系はこれよりも分子の長鎖の分布が大きい

PMPCブラシの乾燥状態および溶液中の膜厚 原子間力顕微鏡(AFM)による断面観察

PMETA ブラシ/NaCl 水溶液界面での中性子反射率測定

塩濃度が高くなると分子鎖ブラシが収縮 1.静電的遮蔽、2. 貧溶媒化

Kyushu University

PMETA-CIブラシの乾燥状態および溶液中の膜厚 原子間力顕微鏡(AFM)による断面観察

and the second second state and the second second

Neutron Reflectivity from PDMAPS Brush/D₂O Interface

Cononsolvency領域でのPMPCの挙動

エタノール

一般的な高分子

- 高分子は自分自身と似た性質 の溶媒には良く溶ける。
- ➡ ある高分子が溶媒Aに溶け、溶 媒Bにも溶けるなら、AとBの混 合液にも溶ける

特殊な高分子

- ◆ 純溶媒Aにも純溶媒Bにも溶け るがAとBの混合液には溶けな い(相分離)。
- ▶「Cononsolvencyを持つ」高分子 と言う

PMPCは水 (H₂O)とエタ ノール (EtOH) に対して cononsolvencyを示す。

Y. Matsuda, M. Kobayashi, K. Ishihara, M. Annaka, A. Takahara, UCST-Type Cononsolvency Behavior of a Zwitter Ionic Polymer in the Mixture of Water and Ethanol, Polym. J., 40, 479-483 (2008).

PMPCブラシのCononsolvency溶媒界面における中性子反射率測定

ana di kana ang kata ng <mark>Pang</mark>i kata kana sa kata ng kat

Swelling Behavior: AFM Images of PMPC Brush in Air and Aqueous Solutions

まとめ

- フルオロアルキルアクリレート系高分子の表面分子鎖凝集状態のGIWAXDによる解析とその特異的な表面特性
 →ナノインプリントと濡れ、液体ビー玉
- NRを用いたポリ(フルオロアルキルアクリレート)ブラシの超臨
 界二酸化炭素中での膨潤挙動
 →超臨界状態での良溶媒化
- 3. NRによる高分子電解質ブラシの水界面での分子鎖凝集状態 評価

→分子鎖コンフォメーションの溶媒、塩濃度依存性

