

中性子で見る地球内部の物質科学

鍵 裕之 東京大学大学院理学系研究科

2009. 11. 18 @ Tsukuba

地球内部物質への水の収容能力

Locating H positions in deep earth materials

H bonding in deep earth material → Changes in macroscopic properties of minerals

H-bearing mantle minerals (H positions unknown)

H-bearing core material (H positions unknown) Interior of ice planets and properties of ices at extreme conditions H_2 gas

Dense H_2 fluids

Ices with various structures

core

Neptune (diameter = 49528km)

X線と中性子

試料体積が減少する

高圧下での中性子散乱実験の困難さ

(各種元素の中性子による散乱強度)

Contents of this talk

- 1. 強誘電体氷XIの性質と宇宙での存在可能性 中性子回折と赤外吸収スペクトルの測定
- 下部マントルまで安定に存在しうる含水アルミニウム酸化物の 水素結合の対称化 精密な圧縮率の測 定と高圧下中性子回折実験への期待
- 3. J-PARCでの高圧実験の進行状況 工学材料回折装置 (BL19, 匠)での高圧実験
- 4. J-PARCでの高圧ビームラインの建設状況

Formation condition of hydrogen-ordered ice XI: neutron diffraction and infrared spectra

<u>Masashi Arakawa</u>¹, Hiroyuki Kagi¹, and Hiroshi Fukazawa²

¹Geochem. Lab., Grad. Sch. Sci., Univ. Tokyo, Japan ²Neutron Materials Research Center, Japan Atomic Energy Agency, Japan

Phase diagram of ice

(modified after Lobban et al., 1998)

少なくとも14以上の多型

Ice Ih vs. ice XI

hydrogen-ordered ice XI(強誘電体) hydrogen-disordered ice Ih $\frac{1}{2}$ H Hydrogen disordered ½ **H** 地質学的時間 (e.g., 10,000 years) ice rules: (1) two hydrogen atoms exist near each oxygen atom (Leadbetter, 1985; Fukazawa et al., (2) one hydrogen atom locates on each O–O bond

(Bernal and Fowler, 1933; Pauling, 1935; Peterson & Levy, 1957)

不純物のアルカリイオンを結晶構造
中に導入することで、水分子がOHイ
オンに置き換わり、低温下でも水素
の移動が促進される
(Kawada, 1972; Suga et al., 1982, 1983).

2005)

ferroelectric

Ice XI in the universe?

赤外望遠鏡による観測から、宇宙に結晶の氷が存在する (e.g., Brown & Calvin, 2000; Cook et al., 2007) 実験室の観察から、太陽系で氷は結晶相として存在する (Kouchi et al. 1994).

ice Ih with disordered hydrogen ferroelectric ordered ice XI

重力(万有引力)vs. 静電力

Hydrogen-ordered ice XI is a thermodynamically stable phase?

現状ではまだ何ともいえない状況 (e.g., Cowin and ledema, 1999)

Neutron powder diffraction study at low T and ambient P

 ✓氷XI相の結晶構造はKODドープした試料のみで報告されている(Leadbetter, 1985; Fukazawa et al., 2006).

✓NaOD, LiODをドープした氷の結晶構造

✓氷XIが生成する条件(温度履歴、ドーパントの種類と濃度)

Measuring neutron powder diffraction of doped ices

Oak Ridge National Laboratory, USA (ORNL)

High Flax Isotope Reactor (HFIR) 85 MW

US/Japan Wide-angle Neutron Diffractometer (WAND) wavelength is 1.476 Å, ⊿d/d ~ 0.8%

Japan Atomic Energy Agency, Japan (JAEA)

Japan Research Reactor (JRR-3) 20 MW

High Resolution Powder Diffractometer (HRPD) wavelength is 1.82935 Å, $\Delta d/d \sim 0.2\%$

0.01 M NaOD-doped ice

annealed at 60 K for 15 hours and 68 K for 6 days and 21 hours

0.1 M LiOD-doped ice

annealed at 60 K for 15 hours and 68 K for 3 days and 19 hours

Structural parameters

Rietveld analysis was carried out for the diffraction profiles in order to obtain arrangement of hydrogen (structure parameter) in the doped ice.

Atoms	g	x	У	z	B (Å2)	mass fraction, f
0.1 M LiOD-dope ice Ih						0.888
01	1	1/3	2/3	0.0624(2)	1.21(6)	
D1	0.5	1/3	2/3	0.1988(3)	1.96(6)	
D2	0.5	0.4552(2)	0.91	0.0176(2)	1.90(6)	
0.1 M LiOD-doped ice XI						0.112
01	1	0	0.648(3)	0.058	0.7(5)	
02	1	1/2	0.829(4)	-0.057(2)	1.0(6)	
D1	1	0	0.653(3)	0.190(2)	1.1(4)	
D2	1	0	0.540(3)	0.0254	0.9(4)	
D3	1	0.670(4)	-0.241(3)	-0.025(2)	2.0(4)	
0.01 M NaOD-doped ice XI						0.235
01	1	0	0.650(2)	0.062	0.1(3)	
02	1	1/2	0.823(2)	-0.0617(9)	0.4(3)	
D1	1	0	0.659(2)	0.190(2)	0.4(2)	
D2	1	0	0.536(2)	0.024	0.1(2)	
D3	1	0.665(2)	-0.240(2)	-0.0235(8)	1.4(2)	
0.001 M KOD-doped ice XI						0.318
01	1	0	0.653(2)	0.064	0.1(2)	
02	1	1/2	0.819(1)	-0.0643(7)	0.4(2)	
D1	1	0	0.664(2)	0.198(2)	0.3(3)	
D2	1	0	0.538(2)	0.022	0.1(2)	
D3	1	0.667(3)	-0.240(2)	-0.0221(9)	1.8(2)	

NaOD-, LiOD-ドープの秩序化氷の結晶構造は、 KOD-ドープの秩序氷XIと同一であった

Nucleation and growth of ice XI at 70 K

Infrared spectroscopy

宇宙の氷は赤外望遠鏡によって観測される

実験によりice XI の赤外スペクトルの特徴を理解することが不可欠

To search for ice XI in the universe...

氷XI相の赤外吸収スペクトルを測定した

Infrared absorption spectra of thin film ice XI

Summary 1

- KODだけでなく、LiODやNaODをドープした氷もXI相に転移し、 結晶構造も同じである。
- 氷XI相の生成は、冷却履歴にも依存する。一度、XI相を生成したものを加熱し、再度冷却するとXI相を生成するが、XI相を経験していない場合は、同一の温度条件でもXI相を生成しない。
- KODドープ条件で、氷の赤外吸収スペクトルを測定したところ、 XI相の生成にともなって秤動モードの半値幅が著しく減少した
- 今後は赤外吸収スペクトルと、中性子回折の同時測定を行い たい(バルク試料と薄膜試料の違い)

水素結合 + 圧力 → 対称化

- ✓ 水素結合 + 圧力
 - 0...0距離が縮む
 - H...O距離が縮み、水素結合が強くなる
- → 水素が二つの酸素の中点に存在「対称化」
 ✓ H₂Oの場合: 60 GPa ~

(e.g. Goncharov et al. 1996; Aoki et al., 1996)

氷の赤外スペクトルの 圧力変化 (*Aoki et al., 1996*)

含水鉱物 δ-AlOOHと水素結合の対称化

✓ ダイアスポア(α-AlOOH) の高圧相 (Suzuki et al. 2000)

✓ 歪んだルチル型構造

(e.g. Vanpeteghem et al. 2007)

- 常圧で強い水素結合 O-O 2.57 Å, D-O 1.02 Å
- ✓ 第一原理計算

(Tsuchiya et al., 2002; Panero and Stixrude, 2004; Li et al., 2006)

- 水素結合が対称化
- 対称化の圧力:常圧~50 GPa(研究 者によりまちまち)
- 対称化により体積弾性率が約20%増 加(地震波伝搬速度の変化)

高圧中性子でのターゲット

中性子・X線回折実験の結果の相違

- ✓ δ-AIOOD 中性子回折実験(非 干渉性散乱を避けるためD化)
- O-D 伸張、D...O伸縮
- 対称化の圧力:10 GPa以上?
- 1.5 D-O, O...D distance (Å) 1.4 $O-\Gamma$ 1.3 1.2 1.1 D...0 1 0.9 15 5 10 20 0 Pressure(GPa)

- ✓ δ-AIOOH X線回折実験
- 軸比b/cの変化;10 GPa
- 中性子の結果との相違

Sano-Furukawa et al. 2008

水素結合と同位体効果

- ✓ HとDで質量に差 ¹H (p) 1.00782 u < D(=²H; p+n) 2.01410 u
 - → 大きな同位体効果
 - 1. 幾何学的同位体効果 geometric isotope effect △R HをDに置き換えるとO…O距離が広がる
 - 2. 量子効果 quantum effect

Hの方がポテンシャル障壁を越えやすい

→ <u>δ-AIOODについても圧縮実験を行い同位体効果を考慮する必要</u>

✓ 高圧発生: ダイアモンドアンビルセル

- ✓ 試料: δ-AIOO(D_{0.75}H_{0.25}) (中性子回折実験と同じ試料)
 - 川井型マルチアンビル高圧発生装置(東北大学設置)

18 GPa, 900-1000 °C で合成

- ✓ 圧力媒体: He, Loading Pressure (疑似静水圧条件)
- ✓ X線回折実験: Photon Factory, BL13A (λ = 0.4265 Å)
- ✓ 圧力決定: ruby 蛍光法 (*Zha et al., 2000*)
- ✓ 格子定数の決定
 - 110,011,111,210,121,220,310,002,130,112 反射を使用

after gas loading

常圧における格子定数の比較

	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	V (Å ³)	
AIOOD	4.7199 (7)	4.2351 (7)	2.8333 (4)	56.635 (15)	This study
AIOOH	4.7147 (5)	4.2250 (4)	2.8318 (2)	56.408 (9)	鍵ら 高圧討論会
Δ	0.0052 (12)	0.0101(11)	0.0015 (6)	0.23 (2)	

- ✓ 重水素化による同位体効果
 - b軸が特に伸張
 - c軸はあまり変化しない
 - ◆重水素化によりO…O距離が 広がったためと考えられる

Sano-Furukawa et al. 2009

✓ 12 GPa付近で圧縮挙動
 に変化

b, *a* 軸が圧縮されにくくなる *c*軸には変化なし

δ-AlOOH, δ-AlOOD:加圧に伴う軸比の変化

* 全てK' = 4 fixed

Summary 2

- ✓ δ -AIOOD, δ -AIOODについて擬似静水圧下における圧縮実験を行った
- ✓ 常圧における同位体効果
 - D化によって水素結合の配向する*a, b*軸がδ-AlOOHよりも伸張
- ✓ 圧縮挙動の変化
 - 12 GPaより高圧で*a, b*軸が圧縮されにくくなる
 - 軸比の圧力変化も大きく変化
 - 圧縮挙動の変化する圧力はδ-AlOODの方が高圧側
 - → 変化が水素結合に関係していることを示唆

12GPaで水素結合が対称化するのであれば中性子実験も十分可能な圧力 J-PARCでの実験へ期待

高圧下その場中性子粉末回折実験を可能にする

1) 先行するJ-PARCビームラインに高圧装置を 持ち込んでの実験

2) 高圧装置を中性子実験に適したものに技術開発

3) 高圧専用ビームラインの建設

BL19 工学材料回折装置「匠」での高圧実験

BL19 工学材料回折装置「匠」での高圧実験

J−PARC BL19での δ-AIOO(D,H)の中性子回折パターンの測定

試料: δ-AlOO(D,H)(約400mg程度 Φ6 x h8~9mm) 試料ホルダー:V管(Φ6mm) 約6時間の露出(18kW運転)

Use of nano polyclistalline diamonds (NPD) as anvil material

Direct conversion from graphite to nano-diamond aggregate at high T and P Innovated by Irifune *et al.* (2003)

4 mm

50nm

Sintered Diamond (Co binder)

Single Cystal IIa (001)<100>

Nano polycrystalline diamond (NPD)

Knoop hardness (GPa)

Laser-fabricated NPD anvils

1.25 mm cullet, 2.7 mm high 30° conical

DAC for neutron diffraction (ver.1.0)

BL11 超高圧中性子回折装置 High Pressure Neutron Diffractometer (PLANET: Pressure Leading Apparatus for Neutron TOF experiments) 圧姬

