物構研シンポジウム'09 放射光・中性子・ミュオンを用いた表面・界面科学の最前線

高品質な薄膜作製技術の確立

完全エピタキシー

1. 成長モード

2. 最表面終端原子層の制御

 ABO_3 の AOか BO₂か

3. コヒーレントエピタキシー

M. Kawasaki et al., Science **266** (1994) 1540. 和泉 et al., 固体物理 **34** (1999) 609.

バンド絶縁体: SrTi(4+)O₃ モット絶縁体: LaTi(3+)O₃

界面でのTi³⁺ - Ti⁴⁺ 電荷変調

Laの組成分布よりブロード

LaTiO₃/SrTiO₃界面の金属伝導

A. Ohtomo et al., Nature 419 (2002) 378.

人工超格子: [(LaMnO₃)_m(SrMnO₃)_m]_n

T. Koida et al., PRB 66 (2002) 144418.

共鳴軟X線磁気散乱 元素選択的な情報

放射光・中性子の相補的な利用