物講研シンポジウム「放射光・中性子・ミュオンを用いた表面・界面科学の最前線」 2009年11月17日 つくば国際会議場エポカル

半導体における室温強磁性の探索と 中性子散乱実験の可能性

筑波大学 物質工学系	黒田 眞司
------------	-------

筑波大学 物質工学系

物質・材料研究機構* 高輝度光科学研究センター ポーランド科学アカデミー

*ナノテクノロジー総合支援プロジェクト

1. Introduction

強磁性半導体の物質探索 強磁性発現のメカニズム

キャリア誘起相互作用 vs 二重交換相互作用

磁性元素分布の均一度 — 磁性を左右する要因

2. (Zn,Cr)TeにおけるCr分布と強磁性特性の相関

Cr分布の均一度と強磁性特性との相関 Cr-richクラスター形成による超常磁性的振舞い Crの不均一分布の起源--- スピノーダル分解 XAS/こよるCr周辺局所構造の解析

S. Kuroda *et al.* Nature Mater. **6**, 440 (2007)

3. 磁性半導体における中性子非弾性散乱測定の可能性

これまでの研究例 期待される成果と問題点 測定試料の候補

半導体スピントロニクス

スピントロニクス ---- 電子の **電荷とスピン**の双方を同時に利用

強磁性半導体 (@室温)

⇒ 半導体スピントロニクスに必須の材料 スピンの揃った電子の供給源

半導体における強磁性の実現

スピンエレク - <u>室温動作</u>	ト <i>ロニクスへの</i> の必要性	の応用
室温以上で強く	磁性になる半導体	材料の探索
これまでの強磁		温度 T _C
(Pb,Mn,Sn)Te	<i>Story</i> (1986)	4K (30K)
(In,Mn)As	Munekata (1991)	35K (90K)
(Ga,Mn)As	<i>Ohno</i> (1996)	110K (180K)
(Cd,Mn)Te:N	<i>Cibert</i> (1997)	2K (10K)

強磁性になるメカニズム ⇒ キャリア(正孔)がスピン間の相互作用を媒介する (キャリア誘起強磁性)

転移温度 T_Cの理論的予測 Mn 5%, p = 3.5x10²⁰cm⁻³

室温強磁性半導体の物質探索

GaN	+ Mn	$T_{\rm C} \sim 900 {\rm K} {\rm (Sonoda)} {\rm vs} {\rm PM} {\rm (Munekata)}$
	+ Cr	> RT (Asahi)
	+ Gd	> RT (Asahi, Ploog)
ZnO	+ Co	$T_{\rm C} > RT$ (Tabata) vs PM (Kawasaki)
	+ Mn	
	+ Cr	
TiO ₂	+ Co	T_C > RT (Kawasaki)
ZnTe	+ Cr	<i>T</i>_C ~ 300K (Saito)
CdGeP	₂ + Mn	$T_{\rm C} > {\rm RT}$ (Satoh)
Ge	+ Mn	<i>T</i>_C ~ 120K (Park)
	+ Fe	170K (Tanaka)

本当に強磁性か? メカニズムは何か? Unidentified Ferromagnetic Object

磁性半導体酸化物の強磁性のさまざまな報告

Curie & Neel Temperatures For Oxides (K)

Is it possible to create magnetic semiconductors that work at room temperature?

Such devices have been demonstrated at low temperatures but not yet in a range warm enough for spintronics applications.

Science 125th anniversary (2005)

半導体における強磁性のメカニズム

Tetrahedral coordinate of 3d TM

K.Sato and H.Katayama-Yoshida, Semicond. Sci. Technol. **17** 367 (2002)

反結合準位 t_a の 部分的占有 ⇒ ホッピングによるスピンの強磁性的整列 (Double-exchange)

相互作用は短距離的

結晶中の磁性元素の分布の均一度

- 同一物質でもさまざまな磁性の報告例
- ~ 高い転移温度の強磁性から常磁性まで
- 矛盾する実験結果を説明する可能な要因

「異相の析出物(強磁性)の存在 、結晶中の磁性元素の分布の不均一

Sato & Katayama-Yoshida, JJAP 44, L948 (2005)

磁性スピン間の相互作用が短距離の場合 磁性元素の一様な分布 強磁性は現れない (組成が低い場合)

磁性元素の不均一な分布 磁性元素の凝集したナノ領域の形成 → 強磁性クラスター

➡ 超常磁性的振舞い (クラスターの磁気異方性) 見かけ上高いTcの強磁性

M. Jamet et al. Nature Mater. 5, 653 (2006)

ドーピングによる強磁性の増強とCr分布の偏り

アクセプター(窒素)のドーピング ⇒ 強磁性の抑制 ドナー(ヨウ素) ⇒ 強磁性の増強

<u> 強磁性増強(転移温度上昇)の起源</u> --- Cr凝集ナノ領域の形成

EDS Cr mapping

Homogeneous

Cr凝集領域の形成と超常磁性

 $x \sim 0.05$

マトリックス中の強磁性クラスター

- ・磁場中冷却(FC)と例磁場冷却(ZFC)過程 の間の不可逆性(Irreversibility)
- ・ZFC過程における磁化のカスプ

ブロッキング温度 T_B

→ 超常磁性的振舞い (Super-PM)

Cr凝集領域の磁気異方性 --- 超常磁性

Cr凝集領域 --- 強磁性クラスター

 $T < T_{\rm B} --- クラスターの磁気モーメント$ は凍結 $<math>T > T_{\rm B} --- 外部磁場方向に整列$ M-T 曲線 ---- ブロッキング現象(cusp in ZFC curve) 不可逆性 (ZFC & FC) $T_{\rm B} \leftarrow 磁気異方性エネルギー KV$

クラスターの体積・Cr組成

M-H 曲線 ---- ヒステリシス

磁気異方性 Anisotropic energy KV

スピノーダル分解による磁性元素の凝集

Crの不均一分布の起源 — スピノーダル分解による相分離 e.g. (Ga,In)N Ga-richマトリックス中のIn-rich

クラスターの形成 ⇒ 発光中心

磁性不純物 ⇒ 磁気的相互作用による相分離の促進 Schilfgaarde & Mryasov, PRB 63, 233205 (2001)

Monte-Carlo simulation (Cr in GaN)

Sato & Katayama-Yoshida, JJAP 44, L948 (2005)

Cr分布の均一性は成長条件により変化

ドナー or アクセプターのドーピング 成長雰囲気(Zn/Te flux比)によるストイキオメトリーからのずれ Cr価数の変化

Cr凝集の起源 ードーピングによる変化

Improvement of crystallinity (reduction of stacking faults)

XAS/によるCr 周辺の局所構造解析

EXAFS振動の解析によるCr局所構造の評価

最隣接ピークによる振動成分のみを抽出(Filtered EXAFS) ⇒ Znサイト置換型を仮定した理論曲線とフィッティング

Cr凝集柱状領域の形成 一 成長温度による制御

x ~ 0.2

I-doped $Zn_{0.8}Cr_{0.2}Te$ on GaAs(001) (CdI₂ = 200°C)

{111}面に沿ったCrの凝集 ⇒ 柱状領域の形成

Cr凝集柱状領域の成長方向 一 面方位依存性

x ~ 0.2 I-doped $Zn_{0.8}Cr_{0.2}Te \ (T_S = 360^{\circ}C)$

Growth on GaAs (001)

Growth on GaAs (111)

磁性半導体における交換相互作用の評価

磁性スピン間の交換相互作用 Exchange coupling J

強磁性のメカニズムを理解する上で 重要なパラメーター

交換相互作用の評価手法

- ・磁化測定 スピン反転のステップの観測 (相互作用が反強磁性的な場合)
- 強磁性共鳴測定
- ・ラマン散乱

etc.

いずれも間接的手法

Y, Shapira et al., JAP 92, 4155 (2002)

磁性半導体における中性子非弾性散乱測定

希薄磁性半導体 (II,Mn)VI

Mn²⁺スピン間の反強磁性的相互作用 (Heisenberg type)

 $H_{\rm ex} = 2 J S_i \cdot S_i$ Zn_{0.9925}Mn_{0.0075}Se 最隣接 Mn^{2+} スピン対の励起 $\rightarrow J_{NN}$ の決定 Zn_{0.9925}Mn_{0.0075}Se $\vec{Q} = \frac{2\pi}{3}(1.05,0,0)$ (a) (b) 600 S_{T} Е T≪2J/k_B Relative intensity T=8 K30J Relative intensity 400 T≅2J/k_e 20J (1| + (0|¢0 12J - $T > 2J/k_{\rm B}$ 200T=40 ⊮ 6J • 2J -2I6JNeutron energy loss $\mathbf{2}$ $\mathbf{3}$ Neutron energy loss (meV)

T. M. Giebultowicz *et al.*, JAP **67**, 5096 (1990)

強磁性半導体における交換相互作用の評価

強磁性半導体に対する測定の期待と問題

・スピン間の交換相互作用の大きさを評価

相互作用の起源 強磁性発現メカニズム の理解

- ・磁性スピンの分布 — *一様* vs *非一様*
- ・スピン間の相互作用の範囲に対する依存性

 長距離 or 短距離

磁性元素の母体半導体への固溶度は低い。 → 非熱平衡結晶成長法で薄膜として成長 → 体積が小さい

バルク結晶の必要性

FZ法により成長したTiO₂:Coバルク結晶の強磁性

TiO₂:Co 一室温強磁性の報告 (Matsumoto et al. Science 291, 854 (2001)) 強磁性の起源は未解明

FZ法によるバルク結晶の作製(ルチル型構造) 筑波大学物質工学系 八巻 和宏、門脇 和男

還元雰囲気中で成長した結晶で強磁性の発現 ($T_{\rm C}$ ~850K)

<u> 強磁性は Intrinsic or 析出物?</u> メカニズムは? まとめ

1. 強磁性半導体の物質探索 磁性半導体新材料の合成と物性 — 混沌とした状況 強磁性発現のメカニズム

キャリア誘起相互作用 vs 二重交換相互作用

磁性元素分布の均一度 — 磁性を左右する要因

2. (Zn,Cr)TeにおけるCr分布と強磁性特性の相関

Cr分布の均一度と強磁性特性との相関 Cr-richクラスター形成による超常磁性的振舞い Crの不均一分布の起源---スピノーダル分解 XAS/こよるCr周辺局所構造の解析

S. Kuroda et al. Nature Mater. 6, 440 (2007)

3. 磁性半導体における中性子非弾性散乱測定の可能性 これまでの研究例 — 交換相互作用の大きさの評価 期待される成果と問題点 測定試料の候補 — TiO₂:Coバルク結晶(FZ)