物構研シンポジウム'09「放射光・中性子・ミュオンを用いた表面・界面科学の最前線」 平成21年11月17~18日, つくば国際会議場エポカル

軟X線磁気円二色性によるスピントロニクス材料の研究

藤森 淳

東京大学理学系研究科

分光測定

片岡隆史, Vijay Raj Singh, 山崎陽, 小林正起(東大理·新領域) 小出常晴, 朝倉大輔, 間宮一敏(物構研PF) 竹田幸治, 岡根哲夫, 大河内拓雄, 斎藤祐児 (原子力機構)

F.-H. Chang, C.-S. Yang, L. Lee, H.-J. Lin, D.-J. Huang, C.T. Chen (NSRRC, Taiwan)

試料

田中雅明, 大矢 忍, ファムナムハイ(東大工)Ga_{1-x}Mn_xAs 福村知昭, 山田 良則, 上野 和紀, 川崎雅司(東北大金研・WPI材料機構)Ti_{1-x}Co_xO₂ 黒田眞司, 石川弘一郎, 張 珂(筑波大物質工) Zn_{1-x}Cr_xTe K.V. Rao, M. Kapilashrami, L. Belova (Royal Inst Tech, Swedem) Zn_{1-x}Mn_xO薄膜 D. Karmakar (BARC), S.K. Mandal, T.K. Nath (IIT Kharagpur), I. Dasgupta (IACS) Zn_{1-x}Fe_xO, Zn_{1-x}(Fe, Co)_xO, Zn_{1-x}(Mn, Co)_xO ナノ粒子

理論

田中新(広大先端物質)多重項計算、クラスター計算

Discovery of ferromagnetism in MBE-grown Mn-doped III-V-based DMS

VOLUME 63, NUMBER 17

PHYSICAL REVIEW LETTERS

23 October 1989

Diluted Magnetic III-V Semiconductors

H. Munekata, H. Ohno, ^(a) S. von Molnar, Armin Segmüller, L. L. Chang, and L. Esaki IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (Received 8 August 1989)

Growth "phase diagram" of $Ga_{1-x}Mn_xAs$ Curie temperature of $Ga_{1-x}Mn_xAs$

T. Hayashi, M. Tanaka, J. Cryst. Growth, '97

H. Ohno et al., JMMM, '99

Diluted magnetic semiconductors (DMS): Expected for future *spintronics* applications

- GMR devices
- Non-volatile memories
- New logic circuits
- New devices utilizing spin injection
 - Circularly polarized LED
 - Magnetization control by spin current

Y. Ohno et al., Nature '99

Theoretical prediction of room-temperature ferromagnetism in DMS

T_c of Mn-doped semiconductors Stability of magnetic states in DMS in *p-d* exchange mechanism in double-exchange mechanism 0.04 Si Ge Ferromagnetic Energy difference (eV) AIP AIAs GaN Room GaP Temperatur -0.04 GaAs GaSb TM concentration InP -0.08 + 20% **5**% InAs □ 10% × 25% Paramagnetic ZnO * 15% ZnSe -0.12 ZnTe Cr Mn Fe Co Ni \mathbf{V} 100 10 300 K 1000 Curie temperature (K)

T. Dietl et al. Science '00

K. Sato et al. JJAP '00.

Wide-gap semiconductors such as ZnO, GaN, and TiO₂ are promising host materials for room-temperature ferromagnetic DMS.

Rom-temperature ferromagnetic DMS

- Are they intrinsic DMS?
 - No ferromagnetic contamination such as Fe metal?
 - No precipitation of second phases, etc?
- To answer these questions:
 - SQUID measurements are not sufficient
 - Anomalous Hall effect is useful but controversial

X-ray magnetic circular dichroism (XMCD) in core-level x-ray absorption spectra (XAS)

Ferromagnetic, paramagnetic and non-magnetic components in XMCD vs SQUID signals

SQUID data of a DMS thin film sample

M-H curve

M-T curve

XMCD experiment at BL11-A of Photon Factory (previous)

SC magnet *H* <5 T *T* >10 K Angle dependence

T. Koide et al. Rev. Rev. Sci. Instr. 63, 1462 (1992)

XMCD endstation at BL-16A of Photon Factory (present)

Superconducting magnet, up to 5 T Low temperature down to ~10 K Angular-dependent XMCD (L, T)

T. Koide et al. Rev. Rev. Sci. Instr. 63, 1462 (1992)

XMCD endstation at JAEA beamline BL-23SU of SPring-8

Helical undulator with phase modulation

Superconducting magnet, up to 10 T Low temperature, down to ~6 K High energy resolution and brightness monochromator

Y. Saitoh et al., Nucl. Instrum. Meth. A '01

XMCD endstation at the Dragon beamline BL-11A at NSRRC

NSRRC, Taiwan

Bending magnet Electro-magnet, up to 1 T Low temperature down to 20 K Total-electron-yield (TEY) and totalfluorescence-yield (TFY) mode detections

C.T. Chen and F. Sette, Rev. Sci. Instr. 60, 1616 (1989)

Outline

$Ga_{1-x}Mn_xAs$

Effects of low-temperature post-annealing in Ga_{1-x}Mn_xAs

Change of T_c by post-annealing

S.J. Potashnik et al., APL '01 T. Hayashi et al., APL '01

Molecular dynamic calculation

Mn first enters interstices then substitutes Ga.

S.C. Erwin and A.G. Petukhov PRL '02

Ga_{1-x}Mn_xAs samples

Sample: as grown Ga_{1-x}Mn_xAs

Paramagnetic component of XMCD vs T in as-grown Ga_{1-x}Mn_xAs

Ferromagnetic component of XMCD vs T in as-grown Ga_{1-x}Mn_xAs

Effects of post annealing on XMCD intensities vs T & H in Ga_{1-x}Mn_xAs

Post annealing diminishes AF interaction by reducing the number of *interstitial* Mn ions.

Y. Takeda et al.,

Effects of low-temperature post-annealing on XAS and XMCD of Ga_{1-x}Mn_xAs

Post annealing expels interstitial Mn ions to surface

Y. Takeda et al.,

Zn_{1-x}Cr_xTe

Diluted ferromagnetic semiconductor Zn_{1-x}Cr_xTe

M-H curves

Doping effects in Zn_{1-x}Cr_xTe

I-doping: Electron-doped N-doping: Hole-doped

N. Ozaki et al., PRL '06

Doping effects in Zn_{1-x}Cr_xTe: XMCD

Inhomogeneous distribution of Cr in Zn_{1-x}Cr_xTe

Energy-dispersive X-ray spectroscopy image

uniform \leftarrow non-uniform T_C low \leftarrow T_C high S. Kuroda et al., Nat. Mater. '07

Spinodal decomposition in high- T_c DMS's

K. Sato et al., JJAP '05 T. Fukushima et al., JJAP '06

Cr valence vs inhomogeneous distribution of Cr in Zn_{1-x}Cr_xTe

Cr 2p XAS of Zn_{1-x}Cr_xTe

Y. Yamazaki et al.

S. Kuroda, T. Dietl et al., Nat. Mater. '07

Room-temperature ferromagnetism in $Ti_{1-x}Co_xO_2$

(μ_B/Co)

Magnetization

0

-2

10⁻⁴ Torr

Co 2p core-level XAS and XMCD of Ti_{1-x}Co_xO₂: Effect of high-*T* annealing in vacuum

XAS

XMCD

"Ferromagnetism is due to segregated Co metal."

Y.J. Kim et al. PRL '03

Co 2p core-level XMCD of Ti_{1-x}Co_xO₂ without high-*T* annealing

Surface- and bulk-sensitive modes of XAS and XMCD measurements

Co 2p XAS and XMCD of $Ti_{1-x}Co_xO_2$ measured by bulk-sensitive TFY mode

XMCD intensity and magnetization vs H for $Ti_{1-x}Co_xO_2$

Surface dead layer on Ti_{1-x}Co_xO₂ film

Total fluorescence yield (TFY) mode (probing depth ~ 100nm) → Strong XMCD intensity

Total electron yield (TEY) mode (probing depth ~ 3-5nm)

Suppression of AHE for Ti_{1-x}Co_xO_{2-δ}films

T. Fukumura et al., submitted to APL

Surface layer of ~5 nm is magnetically dead due to carrier depletion.

[→] Weak XMCD intensity

ZnO-based DMS

Theoretical prediction of room-temperature ferromagnetism in DMS

T_c of Mn-doped semiconductors Stability of magnetic states in DMS in *p-d* exchange mechanism in double-exchange mechanism 0.04 Si Ge Ferromagnetic Energy difference (eV) AIP AIAs GaN Room GaP Temperatur -0.04 GaAs GaSb TM concentration InP -0.08 + 20% **5**% InAs □ 10% × 25% Paramagnetic ZnO * 15% ZnSe -0.12 ZnTe Cr Mn Fe Co Ni \mathbf{V} 100 10 300 K 1000 Curie temperature (K)

T. Dietl et al. Science '00

K. Sato et al. JJAP '00.

Wide-gap semiconductors such as ZnO, GaN, and TiO_2 are promising host materials for room-temperature ferromagnetic DMS.

Zn_{0.98}Mn_{0.02}O films prepared under N₂ atmosphere

cf) P. Sharma et al., Nature Mater '03.

XMCD intensity and magnetization vs H in N-doped Zn_{0.98}Mn_{0.02}O films

cf) P. Sharma et al., Nature Mater '03.

Mn 2p XAS and XMCD of N-doped Zn_{0.98}Mn_{0.02}O films

Mn and Co 2p core-level XAS and XMCD of Zn_{1-2x}Mn_xCo_xO nano-particles

Paramagnetic, unfortunately.

Mn and Co 2p core-level XAS and XMCD of Zn_{1-2x}Fe_xCo_xO nano-particles

XMCD intensity vs H of Zn_{1-2x}Fe_xCo_xO nano-particles

Conclusion

- XMCD of measurements as a function of *T* and *H* provide unique and important information about dilute magnetism in semiconductors.
- $Ga_{1-x}Mn_xAs$:
 - Interstitial Mn are AFM-coupled to substitutional Mn.
 - Low-temperature annealing expels interstitial Mn toward surface and increase the FM moment in bulk.
- Ti_{1-x}Co_xO₂:
 - Co²⁺ ions are responsible for the large FM moment.
 - There exists a magnetically dead layer of ~5 nm thickness.
- Zn_{1-x}Cr_xTe
 - Cr^{2+} drives inhomogeneous distribution of Cr ions and thereby increases T_C .
- ZnO-based DMS:
 - Films: Hole doping creates FM component.
 - <u>Nano-particles</u>: Valence of TM ions increases in the surface region.

XMCD endstation at BL-16A of Photon Factory (present)

Superconducting magnet, up to 5 T Low temperature down to ~10 K Angular-dependent XMCD (L, T)

T. Koide et al. Rev. Rev. Sci. Instr. 63, 1462 (1992)

Co(4ML)/Pt(10ML)多層膜に対する予備実験結果

Inhomogeneous chemical and electronic states in high-*T*_c DMS

